Построение уравнений регрессии с помощью линий тренда в MS Excel при хронометражных наблюдениях



Что такое регрессионный анализ?

Научитесь выстраивать процессы для роста бизнеса и увеличения прибыли.

Регрессионный анализ — это набор статистических методов оценки отношений между переменными. Его можно использовать для оценки степени взаимосвязи между переменными и для моделирования будущей зависимости. По сути, регрессионные методы показывают, как по изменениям «независимых переменных» можно зафиксировать изменение «зависимой переменной».

Зависимую переменную в бизнесе называют предиктором (характеристика, за изменением которой наблюдают). Это может быть уровень продаж, риски, ценообразование, производительность и так далее. Независимые переменные — те, которые могут объяснять поведение выше приведенных факторов (время года, покупательная способность населения, место продаж и многое другое).

Регрессионный анализ включает несколько моделей. Наиболее распространенные из них: линейная, мультилинейная (или множественная линейная) и нелинейная.

Как видно из названий, модели отличаются типом зависимости переменных: линейная описывается линейной функцией; мультилинейная также представляет линейную функцию, но в нее входит больше параметров (независимых переменных); нелинейная модель — та, в которой экспериментальные данные характеризуются функцией, являющейся нелинейной (показательной, логарифмической, тригонометрической и так далее).

Чаще всего используются простые линейные и мультилинейные модели.

Регрессионный анализ предлагает множество приложений в различных дисциплинах, включая финансы. Кстати, регрессионный анализ можно проводить с помощью языка R. Сделать первые шаги в освоении этого языка поможет наш открытый курс « Аналитика с SQL и R ».

Рассмотрим поподробнее принципы построения и адаптации результатов метода.

Предположения линейной модели

Линейный регрессионный анализ основан на шести фундаментальных предположениях:

  1. Переменные показывают линейную зависимость;
  2. Независимая переменная не случайна;
  3. Значение невязки (ошибки) равно нулю;
  4. Значение невязки постоянно для всех наблюдений;
  5. Значение невязки не коррелирует по всем наблюдениям;
  6. Остаточные значения подчиняются нормальному распределению.

Построение простой линейной регрессии

Простая линейная модель выражается с помощью следующего уравнения:

Y = a + bX

  • Y — зависимая переменная
  • X — независимая переменная (объясняющая)
  • а – свободный член (сдвиг по оси OY)
  • b – угловой коэффициент. Он указывает на поведение кривой (убывает или возрастает, угол между с осью)

a и b называют коэффициентами линейной регрессии. В их нахождении и заключается основная задача.

Если в нашей задаче присутствуют несколько факторов: x1, x2, x3, от которых, мы полагаем, зависит y, то нужно использовать множественную регрессию, описываемую уравнением:

Существует много способов определить коэффициенты a и b. Но самым простым и надежным является метод наименьших квадратов (можно научно доказать, что это лучший способ).

Идея метода: мы имеем значения y – числовой ряд или набор данных. Необходимо построить функцию регрессии Y=a + bX так, чтобы выражение (Y – y) 2 было минимальным. (Y – y) 2 – ошибка, которую мы хотим минимизировать. Минимизируется функционал благодаря подбору коэффициентов a и b.

Рис. 3. Линия линейной регрессии.
Пунктиром изображено расстояние y – Y для каждой точки.

Ключевым фактором применения любой статистической модели является правильное понимание предметной области и ее бизнес-приложения.

Линейная регрессия — это довольно простой, но мощный инструмент, который может существенно облегчить работу аналитика при изучении поведения потребителей; факторов, влияющих на производительность и окупаемость; улучшит понимание бизнес процессов в целом.

Примеры использования линейной регрессии

Прогнозирование показателей

Данную модель можно использовать для обнаружения тенденций и составления прогнозов. Предположим, продажи компании росли на протяжении двух лет. Путем проведения линейного анализа данных о ежемесячных продажах компания могла бы спрогнозировать продажи в будущие месяцы.

Оценка эффективности маркетинга

Линейная регрессия также может использоваться для оценки эффективности маркетинга, рекламных кампаний и ценообразования. Чтобы компания «XYZ» оценила качественную отдачу от средств, потраченных на маркетинг определенного бренда, достаточно построить график линейной регрессии и посмотреть, как связаны затраты с прибылью.

Прелесть линейной регрессии в том, что она позволяет улавливать отдельные воздействия каждой маркетинговой кампании, а также контролировать факторы, которые могут повлиять на продажи.

В реальных сценариях обычно существует несколько рекламных кампаний, которые проводятся в один и тот же период времени. Предположим, что две кампании запускаются на телевидении и радио параллельно. Построенная модель может уловить как изолированное, так и комбинированное влияние одновременного показа этой рекламы.

Оценка риска

Модель линейной регрессии хорошо работает для расчета рисков в сфере финансов или страхования. К примеру, компания по страхованию автомобилей может построить линейную регрессию, чтобы составить таблицу выплат по страховке, используя отношение прогнозируемых исков к заявленной страховой стоимости. Основными факторами в такой ситуации являются характеристики автомобиля, данные о водителе или демографическая информация. Результаты такого анализа помогут в принятии важных деловых решений.

Обнаружение важных факторов

В индустрии кредитования финансовая компания заинтересована в минимизации рисков. Поэтому ей важно понять пять основных факторов, вызывающих неплатежеспособность клиента. На основе результатов регрессионного анализа компания могла бы выявить эти факторы и определить варианты EMI (Equated Monthly Installment – фиксированный платеж, произведенный заемщиком кредитору в течение оговоренного срока), чтобы минимизировать дефолт среди сомнительных клиентов.

Ценообразование активов

Еще модель линейной регрессии находит свое применение в ценообразовании активов. «Модель оценки долгосрочных активов» описывает связь между ожидаемой доходностью и риском инвестирования в ценную бумагу. Это помогает инвесторам оценивать целесообразность инвестиций и доходность их портфеля.

Вывод

Несмотря на то, что линейная регрессия имеет довольно жесткие ограничения, поскольку она может работать только тогда, когда зависимая переменная имеет непрерывный характер и имеется линейная зависимость между переменными, модель является самым известным методом анализа и прогнозирования.

Читайте также:  Анализ прибыли предприятия 2014

Мы привели самые популярные примеры использования данной модели в бизнесе и финансах. Естественно, чтобы глубоко понять, как его использовать в той или иной ситуации, нужно погрузиться в метод поподробнее – самостоятельно «пощупать» все его слабые и сильные стороны; посмотреть, как модель ведет себя на уникальных данных и так далее. Это очень интересный и важный процесс – именно поэтому индустрия Data Science сейчас находится на таком подъеме!

Источник

Что такое регрессионный анализ?

Регрессионный анализ — это набор статистических методов оценки отношений между переменными. Его можно использовать для оценки степени взаимосвязи между переменными и для моделирования будущей зависимости. По сути, регрессионные методы показывают, как по изменениям «независимых переменных» можно зафиксировать изменение «зависимой переменной».

Зависимую переменную в бизнесе называют предиктором (характеристика, за изменением которой наблюдают). Это может быть уровень продаж, риски, ценообразование, производительность и так далее. Независимые переменные — те, которые могут объяснять поведение выше приведенных факторов (время года, покупательная способность населения, место продаж и многое другое).Регрессионный анализ включает несколько моделей. Наиболее распространенные из них: линейная, мультилинейная (или множественная линейная) и нелинейная.

Как видно из названий, модели отличаются типом зависимости переменных: линейная описывается линейной функцией; мультилинейная также представляет линейную функцию, но в нее входит больше параметров (независимых переменных); нелинейная модель — та, в которой экспериментальные данные характеризуются функцией, являющейся нелинейной (показательной, логарифмической, тригонометрической и так далее).

Чаще всего используются простые линейные и мультилинейные модели.

Регрессионный анализ предлагает множество приложений в различных дисциплинах, включая финансы.

Рассмотрим поподробнее принципы построения и адаптации результатов метода.

Линейный регрессионный анализ основан на шести фундаментальных предположениях:

Источник

Регрессионный анализ и трендовый метод

Тренд, методы регрессии 187  [c.422]

Как видно из графика на рис. 6.3, имеются существенные колебания показателей объема продаж. Однако отмечается видимая тенденция к увеличению объема продаж, и соответствующий тренд можно выделить с помощью методов регрессии. Линия регрессии показана на графике (рис. 6.3). Из графика видно, что зависимость определена не столь четко, как в предыдущем примере. Так, коэффициент корреляции для этих данных будет значительно меньше по величине, и вообще может оказаться незначимым. Долговременный тренд может быть линейным или нелинейным. Эти данные трудно анализировать из-за сильных расхождений между соседними значениями. Часто, когда мы имеем дело с такого рода данными, необходимо сгладить колебания, и только потом можно сделать какой-либо имеющий смысл прогноз. Методы сглаживания данных временных рядов будут более подробно рассмотрены в последующих разделах.  [c.188]

Линия тренда линейной регрессии представляет собой прямую на ценовом графике, которая строится по методу наименьших квадратов так, чтобы отклонение цен от нее было минимальным.  [c.110]

Линия тренда линейной регрессии представляет собой обыкновенную линию тренда, построенную между двумя точками на ценовом графике методом наименьших квадратов. В результате эта линия оказывается точной средней линией изменяющейся цены. Ее можно рассматривать как линию равновесной цены, а любое отклонение от нее вверх или вниз указывает на повышенную активность соответственно покупателей или продавцов.  [c.110]

Значения индикатора TSF определяются путем расчета линий тренда линейной регрессии по методу наименьших квадратов. Метод наименьших квадратов определяет такое положение линии тренда на графике, при котором ее отклонение от ценовых данных минимально. Формула для расчета линии тренда линейной регрессии приведена на стр. 91.  [c.169]

Как и в случае выделения тренда, методы моделирования стационарных временных рядов применяются далее к ряду остатков регрессии (11.58).  [c.286]

Фактически она представляет собой линию текущего тренда, но строится не на глаз и от руки, а с помощью специальной формулы для ее расчета. Главное условие при построении — чтобы расстояния между реальными значениями цен и линией тренда (линией регрессии) в среднем были минимальными. Называется такой подход к расчету методом наименьших квадратов, Подробную информацию о нем можно найти в учебниках По статистике.  [c.26]

Среди мер по устранению или уменьшению мультиколлинеарности отметим следующие 1) построение уравнений регрессии по отклонениям от тренда или конечным разностям 2) преобразование множества независимых переменных в несколько ортогональных множеств при помощи методов многомерного статистического анализа (факторного анализа или метода главных компонент) 3) исключение из рассмотрения одного или нескольких линейно связанных аргументов.  [c.71]

Применение в анализе рядов динамики методов укрупнения интервалов и скользящей средней позволяет выявить тренд для его описания, но получить обобщенную оценку тренда с помощью этих методов невозможно. Измерение тренда достигается с помощью метода аналитического выравнивания. Исследуемые динамические ряды товарооборота не имеют явной тенденции к росту, спаду или постоянству, и форма связи неочевидна. В этом случае расчет модели производится с применением нескольких уравнений регрессии.  [c.184]

Становление и развитие эконометрического метода происходили на основе так называемой высшей статистики — на методах парной и множественной регрессии, парной, частной и множественной корреляции, выделения тренда и других компонент вре-  [c.14]

Содержательная интерпретация параметров этой модели затруднительна, однако ее можно использовать для прогнозирования. Для этого необходимо определить трендовое значение факторного признаках, и с помощью одного из методов оценить величину предполагаемого отклонения фактического значения от трендового. Далее по уравнению тренда для результативного признака определяют трендовое значение х а по уравнению регрессии по отклонениям от трендов находят величину отклонения у, — у,. Затем находят точечный прогноз фактического значения у, по формуле  [c.268]

Читайте также:  Организация предметно игровой среды и ее влияние на развитие игровых умений детей среднего дошкольного возраста

Метод наименьших квадратов и процедуры подбора прямой регрессии, описанные в предыдущей главе, полностью переносятся и на случай, когда уравнение кривой может быть после некоторых преобразований сведено к линейному тренду  [c.87]

Метод адаптивного сглаживания Брауна. Согласно второму методу Брауна, предполагается, что если ряд значений спроса можно описать некоторой моделью, то желательно применить регрессионный анализ на основе взвешенной регрессии, т. е. большее внимание необходимо уделять той информации, которая поступает позже. Данный метод основывается на простом способе вычисления оценок по методу минимизации взвешенной суммы квадратов ошибок прогноза в случае линейно-аддитивного тренда. Оценка по взвешенному методу наименьших квадратов равна  [c.127]

Линейная регрессия представляет собой прямую линию, построенную по методу наименьших квадратов для вычерчивания линии тренда так, чтобы в среднем расстояния между реальными значениями цен и линией тренда были минимальными. О методе наименьших квадратов и подробное описание метода построения линий линейной регрессии можно посмотреть в учебниках по статистике. Однако для практической работы знание этих формул не является обязательным. При использовании современного программного обеспечения построение линий линейной регрессии не составляет труда. В большинстве стандартных пакетов по техническому анализу они входят в список стандартных индикаторов.  [c.16]

Как правило, определение нормативов на потребление услуг связи выполняется названными выше методами, а также методом сравнительного анализа и экспертных оценок и увязывается с возможностью необходимых капиталовложений. Тем самым создаются предпосылки к разработке реально выполнимых планов. Сравнительные методы базируются на представлении о том, что взаимосвязь между уровнями потребления услуг связи и уровнями развития экономики в различных регионах страны, а также в различных странах подчиняется примерно одним и тем же закономерностям. Справедливость этой предпосылки подтверждается вековым опытом развития электросвязи в мире. Это позволяет при определенных условиях планировать услуги связи на основе сравнения объемах потребления услуг в данном регионе с информацией о более развитых регионах. Кроме того, можно корректировать нормативы или функцию регрессии (тренд), полученную на основе данных по региону, сообразуясь с нормативами и функциями регрессии, выведенными на основе статистических данных по другим регионам, имеющим сходные уровни экономического развития. Таким образом, сравнительные методы могут дополнять варианты плановых решений по перспективам развития услуг связи, полученные другими методами, делая окончательное решение более обоснованным.  [c.144]

Планирование смешанных затрат предполагает построение их линейной функции с параметрами постоянной части и объема переменной части на единицу продукции. Для таких расчетов, в частности, могут использоваться минимаксный метод и регрессионный анализ. Минимаксный метод использует данные о крайних точках графика смешанных затрат. При этом доля переменных затрат соответствует отношению отклонения затрат к отклонению активности. Постоянная доля смешанных затрат определяется как разность между общими смешанными затратами и предварительно рассчитанными переменными затратами. При регрессионном анализе (в случае одной переменной — простая линейная регрессия) осуществляется поиск линии наилучшей аппроксимации (линии тренда) на основе полной выборки наблюдений. Линия тренда (формула затраты/объем) позволяет легко выделять переменную и постоянную части затрат.  [c.158]

Любопытен метод комбинирования линий тренда линейной регрессии (см. стр. 90) и квадрантных линий. При этой комбинации кроме максимальной, минимальной и средней цены отображается также средний наклон графика цен. Применение метода показано на графике курса акций Bla k De ker  [c.91]

Использование FFT для анализа цен осложняется тем, что этот метод разрабатывался применительно к ненаправленным, периодическим данным. Движение же цен часто носит направленный характер, но это препятствие можно устранить путем снятия направленности (detrending) с помощью, например, линии тренда линейной регрессии или скользящего среднего. Кроме того, ценовые данные не являются строго периодическими, поскольку торги не проводятся в выходные и некоторые праздничные дни. Чтобы учесть и это обстоятельство, ценовые данные обрабатываются с помощью сглаживающей функции, называемой прессующим окном (hamming window).  [c.254]

Анализ и обобщение данных осуществляются методами ручной, компьютерной (полукомпьютерной), когда используется карманный компьютер, и электронной (с использованием персонального или большого компьютера) обработки. Для обработки используются как описательные, так и аналитические методы. Среди аналитических методов в маркетинге часто применяются анализ трендов, методы нелинейной регрессии и коррекции, дискриминантный анализ, кластерный анализ, факторный анализ и др. Возможные направления применения отдельных аналитических методов показаны в табл. 2.13.  [c.118]

Сезонная составляющая очевидна во многих случаях, где задействованы финансовые и экономические показатели. Сезонные колебания — это колебания вокруг тренда, которые возникают в периоды до одного года. Сезонную составляющую можно рассчитать путем вычитания тренда из исходного значения временного ряда. Тренд показывает обший тип изменений в объеме реализации нефтепродуктов. Тренд можно выделить с помощью скользящих средних. Тренд в данном случае представляет собой динамику реализации нефтепродуктов за период 01.01.99-01.07.01 г г. с разбивкой по кварталам. Анализируя тренд с помошью метода нелинейной регрессии, получили расчетный прогнозный объем реализации нефтепродуктов на период 01.07.01 -01.07.03 гг. с разбивкой по кварталам. Если к полученным расчетным прогнозным значениям объемов реализации нефтепродуктов прибавить средние колебания реализации нефтепродуктов по периодам  [c.210]

Читайте также:  Георгий Васильевич Свиридов Вокальный цикл Отчалившая Русь

В данном примере для прогнозной оценки объемов продаж по сезонам 2000 г. использован метод сложения. Тренд выделен с помощью трехточечных скользящих средних, а значения 2000 г. рассчитаны уравнением регрессии. Прогнозируемые объемы продаж в каждом из периодов 2000 г. исчислены как сумма оценочных показателей тренда и средних значений сезонных колебаний в каждом сезоне (табл. 4.5). Например, среднее отклонение (колебание) за май — август 1997—1999 гг. определяется так (9,33 + + 11,67 + 12,33 3= 11,И) и т.д.  [c.80]

Linear Regression (Линейная регрессия). Статистический метод исследования тренда. На практике результаты по этому методу близки к результатам по скользящему среднему,  [c.185]

Из графика индикатора видно, что в последнем квартале 1993 года акции ШМ показали лучшие результаты, чем акции Mi rosoft. Затем, в первом квартале 1994 года, акции ШМ отставали от акций Mi rosoft. (Линии тренда нанесены на график индикатора методом линейной регрессии см. стр. 90  [c.154]

В ситуации, когда нет рычага (например, портфель акций без заемных средств), вес и количество одно и то же. Однако в ситуации с рычагом (например, портфель фьючерсных рыночных систем), вес и количество отличаются. Идея, которая была впервые изложена в книге Формулы управления портфелем , состоит в том, что мы пытаемся найти оптимальное количество, и оно является функцией оптимальных весов. Когда мы рассчитываем коэффициенты корреляции HPR двух рыночных систем с положительными арифметическими математическими ожиданиями, то чаще всего получаем положительные значения. Это происходит потому, что кривые баланса рыночных систем (совокупная текущая сумма дневных изменений баланса) стремятся вверх и вправо. Проблема решается следующим образом для каждой кривой баланса надо определить линию регрессии методом наименьших квадратов (до приведения к текущим ценам, если оно применяется) и рассчитать разность кривой баланса и ее линии регрессии в каждой точке. Затем следует преобразовать уже лишенную тренда кривую баланса в простые дневные изменения баланса. После этого вы можете привести данные к текущим ценам (когда это необходимо). Далее, рассчитайте корреляцию по этим уже обработанным данным. Предложенный метод работает в том случае, если вы используете корреляцию дневных изменений баланса, а не цен. Если вы будете использовать цены, то можете получить искаженную картину, хотя очень часто цены и дневные изменения баланса взаимосвязаны (например, в системе пересечения долгосрочной скользящей средней). Метод удаления тренда следует всегда применять аккуратно. Разумеется, дневное AHPR и стандартное отклонение HPR должны всегда рассчитываться по данным, из которых не удален тренд. Последняя проблема, которая возникает, когда вы удаляете тренд из данных, касается систем, в которых сделки совершаются достаточно редко. Представьте себе две торговые системы, каждая из которых инициирует одну сделку в неделю,  [c.216]

ТРЕНД [trend, time trend] —длительная («вековая») тенденция изменения экономических показателей. Когда строятся экономико-математические модели прогноза, Т. оказывается основной составляющей прогнозируемого временного ряда, на которую уже накладываются другие составляющие (напр., сезонные колебания). Среди способов выявления Т. наибольшее распространение имеют метод наименьших квадратов и разные способы выравнивания временных рядов (по средней, скользящей средней и т.д.). Линейный тренд имеет вид у = а + Ы, где t — время а и Ъ — параметры, которые можно выявить методом наименьших квадратов. График такой функции — прямая. Степенной тренд может иметь вид yt- A tb, где параметры А и Ь находятся из линейной регрессии после логарифмирования In yt = In A + b In t. При b > 1 степень роста показателя выше, чем у линейного тренда, при Ъ

Источник

Построение уравнений регрессии с помощью линий тренда в MS Excel при хронометражных наблюдениях

Как поступить в случае, если для определенных объемов/размеров продукции хронометражные замеры отсутствуют? Или число замеров недостаточно, а дополнительные наблюдения в ближайшее время осуществить невозможно? Наилучший способ решения данной проблемы – построение расчетных зависимостей (уравнений регрессии) с помощью линий тренда в MS Excel.

Рассмотрим реальную ситуацию: на складе с целью установления величины трудовых затрат по коробочной отборке заказа были проведены хронометражные наблюдения. Результаты этих наблюдений представлены в таблице 1 ниже.

Впоследствии возникла необходимость определения затрат времени на отборку 0,6 и 0,9 м3 товара/заказа. В связи с невозможностью проведения дополнительных хронометражных исследований затраты времени на отборку данных объемов заказа были рассчитаны с помощью уравнений регрессии в MS Excel. Для этого таблица 1 была преобразована в таблицу 2.

Далее на вкладке «Вставка» в группе «Диаграммы» была выбрана «точечная с гладкими кривыми и маркерами» (рис.1).

Выбор точечной диаграммы, рис. 1

Следующий шаг: курсор мыши был установлен на одной из точек графика и с помощью правой кнопки мыши было вызвано контекстное меню, в котором был выбран пункт: «добавить линию тренда» (рис.2).

Добавление линии тренда, рис. 2

В появившемся окне настройки формата линии тренда (рис. 3) были последовательно выбраны: тип линии линейная/степенная и установлены флажки на следующие пункты: «показать уравнение на диаграмме» и «поместить на диаграмме величину достоверности аппроксимации (R^2)» (коэффициент детерминации).

Источник

Adblock
detector