Поиск и составление плана решения задачи



Этапы решения задачи и приемы их выполнения

Решение любой задачи процесс сложной умственной деятельно­сти. Чтобы овладеть им, надо знать основные лапы решения задачи и некоторые приемы их выполнения.

Деятельность по решению задачи арифметическим методом вклю­чает следующие основные этапы:

1. Анализ задачи.

2. Поиск плана решения задачи.

3. Осуществление плана решения задачи.

4. Проверка решения задачи.

В реальном процессе решения задачи названные этапы не имеют четких границ и не всегда выполняются одинаково полно. Все зависит от уровня знаний и умений решающего. Например, если после про­чтения задачи вы обнаружили, что она известного вам вида и вы знае­те, как ее решать, то, конечно, поиск плана не вычленяется в отдель­ный этап. Однако полное, логически завершенное решение обязатель­но содержит все указанные этапы, а знание приемов их выполнения делает процесс решения любой задачи осознанным и целенаправлен­ным, а значит, и более успешным.

1. Анализ задачи

Основное назначение этого этапа — понять в целом ситуацию, опи­санную в задаче; выделить условия и требования: назвать известные и искомые объекты, выделить все отношения (зависимости) между ними.

Производя анализ задачи, вычленяя ее условия, мы должны соотносить этот анализ с требованиями задачи, Другими словами, анализ задачи всегда направлен на ее требования.

Известно несколько приемов, которые можно использовать при анализе задачи.

Разобраться в содержании задачи, вычленить условия и требова­ния можно, если задать специальные вопросы и ответить на них:

Очем задача, т.е. о каком процессе (явлении, ситуации) идет речь в задаче, какими величинами характеризуется этот процесс?

Что требуется найти в задаче?

Что обозначают те или иные слова в тексте задачи:

Что в задаче известно о названных величинах?

Что является искомым?

Рассмотрим, например, задачу: «По дороге в одном и том же на­правлении идут два мальчика. Вначале расстояние между ними было 2 км, но так как скорость идущего впереди мальчика 4 км/ч, а ско­рость второго 5 км/ч, то второй нагоняет первого. С начала движения и до того, как второй мальчик догонит первого, между ними бегает собака со скоростью 8 км/ч. От идущего позади мальчика она бежит к идущему впереди, добежав, возвращается обратно и так бегает до тех пор, пока мальчики не окажутся рядом. Какое расстояние пробежит за все это время собака?»

Воспользуемся указанным приемом

1) О чем эта задача?

— Задача о движении двух мальчиков и собаки. Оно характеризуется для каждого из участников движения скоростью, временем и пройденным расстоянием.

2) Что требуется найти в задаче?

— В задаче требуется найти расстояние, которое пробежит собака
за все время от начала движения, пока мальчики не окажутся рядом,
т.е. второй не догонит первого.

3) Что в задаче известно о движении каждого из его участников 9

— В задаче известно, что: а) мальчики идут в одном направлении;

б) до начала движения расстояние между мальчиками было 2 км;

в) скорость первого мальчика, идущего впереди. 4 км/ч; г) скорость
второго мальчика, идущею позади, 5 км/ч: д) скорость, с которой бежит
собака, 8 км/ч; е) время движения, когда расстояние между мальчиками
было 2 км, до момента встречи.

4) Что в задаче неизвестно?

— В задаче неизвестно время, за которое второй мальчик догонит
первого, т.е. неизвестно время движения всех его участников. Неизвестно
также, с какой скоростью происходит сближение мальчиков. И неизвестно расстояние, которое пробежала собаки, это требуется узнать в задаче.

5) Что является искомым: число, значение величины, вид некоторого отношения?

Искомым является значение величины расстояния, которое про­бежала собака за время от начала движения мальчиков до момента встречи

Большую помощь в осмыслении задачи оказывает другой прием — перефразировка текста задачи. Он заключается в замене данного в задаче описания некоторой ситуации другим, сохраняющим все от­ношения, связи, качественные характеристики, но более явно их выражающим. Это достигается в результате отбрасывания несуще­ственной, излишней информации, замены описания некоторых по­нятий соответствующими терминами и. наоборот, замены некото­рых терминов описанием содержания соответствующих понятий; преобразование текста задачи в форму, удобную для поиска плана решения.

Особенно эффективно использование данного приема в сочетании с разбиением текста на смысловые части.

Результатом перефразировки должно быть выделение основных ситуаций.

Поскольку в задаче, рассмотренной выше, речь идет о движении, ее можно перефразировать следующим образом:

«Скорость одного мальчика 4 км/ч, а скорость догоняющего его второго мальчика 5 км/ч (это первая часть). Расстояние, на которое мальчики сблизились, 2 км (вторая часть). Время движения мальчиков — это время, в течение которого второй мальчик догонит первого, т.е. в течение которого второй мальчик пройдет на 2 км больше, чем первый (третья часть). Скорость, с которой бежит собака, 8 км/ч. Время движе­ния собаки равно времени движения мальчиков до встречи (четвертая часть). Требуется определить расстояние, которое пробежала собака».

Перефразированный текст часто бывает полезно записать в таблице.

Например, рассматриваемую задачу можно записать с помощью таблицы такого вида:

Скорость Время Расстояние
1-й мальчик 4 км/ч 2-й мальчик 5 км/ч Собака 8 км/ч ? ? ? Одинаковое ? ? ? На 2 км больше 1-го мальчика ?

Построением схематического чертежа может быть завершен анализ задачи о массе шерсти, израсходованной на шапку, шарф и свитер. Для этого условимся массу шерсти, израсходованной на шапку, изо­бразить в виде отрезка произвольной длины. Тогда массу шерсти, из расходованной на шарф и свитер, можно изобразить так, как показа­но на рисунке 39.

И таблица, и схематический чертеж являются вспомогательными мо­делями задачи. Они служат формой фиксации анализа текстовой задачи и являются основным средством поиска плана ее решения.

После построения вспомогательной модели необходимо проверить:

1) все ли объекты задачи и их величины показаны на модели;

2) все ли отношения между ними отражены;

3) все ли числовые данные приведены;

4) есть ли вопрос (требование) и правильно ли он указывает искомое?

2. Поиск и составление плана решения задачи

Назначение этого этапа: установить связь между данными и иско­мыми объектами, наметить последовательность действий.

План решения задачи — это лишь идея решения, его замысел. Может случиться, что найденная идея неверна. Тогда надо вновь возвращаться к анализу задачи и начинать все сначала.

Как искать план решения текстовой задачи? Односложного ответа на этот вопрос нет. Поиск плана решения задачи является трудным процессом, который точно не определен. Можно только указать неко­торые приемы, которые позволят осуществлять этот этап. Одним из наиболее известных приемов поиска плана решения задачи арифме­тическим способом является разбор задачи по тексту или по ее вспо­могательной модели.

Разбор задачи проводится в виде цепочки рассуждений, которая может начинаться как от данных задачи, так и от ее вопросов.

При разборе задачи от данных к вопросу решающий выделяет в тексте задачи два данных и на основе знания связи между ними (такие знания должны быть получены при анализе задачи) определить, какое неизвестное может быть найдено по этим данным и с помощью какого арифметического действия. Затем, считая это неизвестное данным, решающий вновь выделяет два взаимосвязанных данных, определяет неизвестное, которое может быть найдено по ним и с помощью какого действия и т.д., пока не будет выяснено, какое действие приводит к получению искомого в задаче объекта. Проведем такой разбор по тексту задачи:

«На поезде, который шел со скоростью 56 км/ч, турист проехал 6 ч. (осле этого ему осталось проехать в 4 раза больше, чем проехал. Каков весь путь туриста?»

Рассуждения ведем от данных к вопросу: известно, что 6 ч турист проехал на поезде, который шел со скоростью 56 км/ч; по этим данным можно узнать расстояние, которое проехал турист за 6 ч, для этого достаточно скорость умножить на время. Зная пройденную часть рас­стояния и то, что оставшееся расстояние в 4 раза больше, можно найти, ему оно равно. Для этого пройденное расстояние нужно умножить на 4 (увеличить в 4 раза). Зная, сколько километров турист проехал и сколько ему осталось ехать, можем найти весь путь, выполнив сложение най­денных отрезков пути. Итак, первым действием будем находить расстояние, которое турист проехал на поезде; вторым действием расстояние, которое ему осталось проехать; третьим — весь путь.

При разборе задачи от вопроса к данным нужно обратить внима­ние на вопрос задачи и установить (на основе информации, полученной при анализе задачи), что достаточно узнать для ответа на этот вопрос. Для чего нужно обратиться к условиям и выяснить, есть ли для этого необходимые данные. Если таких данных нет или есть только одно данное, то установить, что нужно знать, чтобы найти недостающее данное (недостающие данные), и т.д. Потом составляется план решения задачи. Рассуждения при этом проводятся в обратном порядке.

Проведем такой разбор той же задачи о движении туриста, строя цепочку рассуждений от вопроса к данным: «В задаче требуется узнать весь путь туриста. Мы установили, что путь состоит из двух частей. значит, для выполнения требования задачи достаточно знать, сколько километров турист проехал и сколько километров ему осталось про­ехать. И то, и другое неизвестно. Чтобы найти пройденный путь, достаточно знать время и скорость, с которой ехал турист. Это в задаче неизвестно. Умножив скорость на время, узнаем путь, который турист проехал. Оставшийся путь можно найти, увеличив пройденный путь в 4 раза (умножив на 4). Итак, вначале можно узнать пройденный путь, затем оставшийся, после чего сложением найти весь путь».

Поиск плана решения задачи может проводиться по вспомогательной модели, выполненной при анализе задачи.

Покажем, как можно осуществить поиск плана решения задачи о массе шерсти, израсходованной на шарф, шапку и свитер, по схематическому чертежу (рис. 39).

По чертежу видно, на сколько больше израсходовали на свитер, чем, например, на шарф; если из всей массы шерсти вычесть 400 г, то мы узнаем, сколько бы всего израсходовали шерсти, если бы на свитер израсходовали столько же, сколько на шарф. Далее, если к этой массе шерсти прибавить 100 г, то мы узнаем, сколько бы всего израсходова­ли шерсти, если бы на шапку израсходовали столько же, сколько на шарф. Разделив полученное число на 3, найдем массу шерсти, израс­ходованную на шарф. Вычтя из полученного результата 100 г, а затем прибавив к нему 400 г, найдем массу шерсти, использованную на шапку и на свитер.

Читайте также:  Анализ урока после посещения урока завучем

Заметим, что поиск плана решения данной задачи по схематиче­скому чертежу может быть проведен иначе (сделайте это самостоя­тельно), — в результате мы получим различные арифметические способы ее решения.

3. Осуществление плана решения задачи

Назначение данного этапа найти ответ на требование задачи, выполнив все действия в соответствии с планом.

Для текстовых задач, решаемых арифметическим способом, исполь­зуются следующие приемы:

— запись по действиям (с пояснением, без пояснения, с вопросами);

— запись в виде выражения.

Приведем примеры различных записей плана решения задачи: «На поезде, скорость которого 56 км/ч, турист проехал 6 ч. После этого ему осталось проехать в 4 раза больше, чем он проехал. Каков весь путь туриста?»

1. Запись решения по действиям с пояснением к каждому выполненному действию.

1) 56 ∙ 6 = 336 (км) — турист проехал за 6 ч

2) 336 ∙ 4 = 1344 (км) — осталось проехать туристу

3) 336 + 1344 = 1680 (км) — должен был проехать турист.

Если пояснения даются в устной форме (или совсем не даются), то запись будет следующей: 1)56 ∙ 6 = 336 (км) 2)336 ∙ 4= 1344 (км) 3)336+ 1344= 1680 (км)

2. Запись решения по действиям с вопросами:

1) Сколько километров проехал турист на поезде?
56 ∙ 6 = 336 (км)

2) Сколько километров осталось проехать туристу?
336∙ 4= 1344 (км)

3) Сколько километров турист должен был проехать?
336 + 1344 = 1680(км)

3. Запись решения в виде выражения.

Запись решения в этой форме осуществляется поэтапно. Сначала записываются отдельные шаги в соответствии с планом, затем со­ставляется выражение и находится его значение. Так как обычно это значение записывают, поставив после числового выражения знак равенства, то запись становится числовым равенством, в левой час­ти которого — выражение, составленное по условию задачи, а в пра­вой — его значение, оно-то и позволяет сделать вывод о выполнении требований задачи.

Так, для рассматриваемой задачи эта форма записи имеет вид:

56 • 6 (км) — расстояние, которое проехал турист на поезде за 6 ч

56•6•4 (км) — расстояние, которое осталось проехать туристу

56•6 + 56•6•4 (км) — путь, который должен проехать турист

56•6 + 56•6•4 = 1680 (км)

Пояснения к действиям можно не записывать, а давать их в устной форме. Тогда запись решения задачи примет вид: 56•6 + 56•6•4 = 1680 (км)

Проверка решения задачи

Назначение данного этапа — установить правильность или оши­бочность выполненного решения.

Известно несколько приемов, помогающих установить, верно ли решена задача. Рассмотрим основные.

1. Установление соответствия между результатом и условиями за­дачи.

Для этого найденный результат вводится в текст задачи и на ос­нове рассуждений устанавливается, не возникает ли при этом проти­воречия.

Проверим, используя данный прием, правильность решения задачи о движении туриста.

Мы установили, что турист должен был всего проехать 1680 км. Пусть теперь этот результат будет одним из данных задачи. Далее, как известно, за 6 ч турист проедет 336 км (56× 6 = 336) и ему останется проехать 1680 — 336 = 1344 (км). Согласно условию задачи это рас­стояние должно быть в 4 раза больше того, которое турист проехал на поезде за 6 ч. Проверим это, разделив 1344 на 336. Действительно, 1344:336 = 4. Следовательно, если найденный результат подставить в условие задачи, то противоречий с другими данными, а именно отношением «быть больше в 4 раза», не возникает. Значит, задача решена верно.

Заметим, что при использовании данного приема проверяются все отношения, имеющиеся в задаче, и если устанавливается, что противо­речия не возникает, то делают вывод о том, что задача решена верно.

2. Решение задачи другим способом.

Пусть при решении задачи каким-то способом получен некоторый результат. Если ее решение другим способом приводит к тому же ре­зультату, то можно сделать вывод о том, что задача была решена верно.

Заметим, что если задача решена первоначально арифметическим способом, то правильность ее решения можно проверить, решив зада­чу алгебраическим методом.

Не следует также думать, что без проверки нет решения текстовой задачи. Правильность решения обеспечивается прежде всего четкими и логичными рассуждениями на всех других этапах работы над задачей.

Источник

Поиск и составление плана решения задачи

Основное назначение этапа – понять в целом ситуацию, описанную в задаче; назвать известные и искомые объекты, выделить все отношения (зависимости) между ними.

Известно несколько приёмов, которые можно использовать при анализе задачи.

а) Задать официальные вопросы и ответить на них:

Что требуется найти в задаче?

Что обозначают те или иные слова в тексте задачи?

Что в задаче неизвестно?

Что является искомым ?

б) Приём перефразировки текста задачи.

Он заключается в замене данного в задаче описания некоторой ситуации другим, сохраняющим все отношения, связи, качественные характеристики, но более явно их выражающим. Отбрасывается несущественная, излишняя информация, заменяются описания некоторых понятий соответствующими терминами; преобразовывается текст задачи в форму, удобную для поиска плана решения. Перефразированный текст часто бывает полезно записать в таблице.

Назначение этапа: установить связь между данными и исходными объектами, наметить последователь­ность действий. Одним из наиболее известных приемов поиска плана решения является разбор задачи по тексту или по ее вспомогательной модели:

От данных к вопросу. От вопроса к данным.
Решающий выделяет в тексте задачи 2 данных и на основе связи между ними определяет, какое неизвестное м.б. найдено по этим данным и с помощью какого арифм. действия. Затем, считая это это неизв. данными вновь выделяет 2 взаимосвязанных данных, опред. неизвестные и т.д., пока не будет выяснено, какое действие приводит к получению искомого в задаче объекта. Нужно обратить внимание на вопрос задачи и установить, что достаточно узнать для ответа на этот вопрос. Затем выяснить, есть ли для этого необходимые данные. Если нет, то установить, что нужно знать, чтобы найти недостающие данные и т.д.

Поиск плана решения задачи может производиться по вспомогательной модели, выполненной при анализе задачи.

3. Осуществление плана решения.

Назначение этапа: найти ответ на требование задачи, выполнив все действия в соответствии с планом.

— запись по действиям (с пояснением, без пояснения, с вопросами);

— запись в виде выражения.

4. Проверка решения задачи.

Назначение этапа: установить правильность или ошибочность выполнения решения.

— Установление соответствия между результатом и условиями задачи (результат вводится в текст задачи и на основе рассуждений устанавливается, не возникает ли противоречия).

— Решение задачи другим способом.

При обучении младших школьников математике решению текстовых задач уделяется большое внимание, т.к.:

1. В сюжетах находят отражение практические ситуации, имеющие место в жизни ребёнка.

2. Решение этих задач позволяет ребёнку осознать практическую значимость тех математических понятий, которыми он овладевает в начальном курсе математики.

3. В процессе их решения у ребёнка можно формировать умения, необходимые для решения любой математической задачи.

Вот, например, простейшая схема – введение в анализ задачи (1 класс.).

2 3 условие
? вопрос
2+3=5 решение
ответ

Она создается на первых уроках при разборе задачи в картинках: В вазе лежало 2 яблока. Мама положила туда еще 3 яблока. Сколько яблок стало в вазе? Цель таблицы – оставить наглядный след при первом объяснении элементов задачи. Выводу схемы сопутствуют вопросы учителя – “Что в задаче известно? Что мы знаем?» Хором говорим – “Мы знаем, что в вазе было 2 яблока, и мы знаем, что мама положила туда еще 3 яблока”. При этом учитель заполняет рамку таблицы на доске и сообщает, что это условие задачи. Мы выделили условие задачи. Что спрашивается в задаче? Сколько яблок стало в вазе? (Схема на доске дополняется знаком вопроса). Это вопрос задачи. Мы выделили вопрос задачи. Сколько же яблок стало в вазе? – спрашивает учитель. Пять, — отвечают дети. Как узнали? Что сделали? К двум прибавили три. Запись на доске продолжается (2+3=5). Это решение. Вы сказали решение задачи. Сколько же стало яблок в вазе, скажите еще раз. (5). “5“ – это ответ. Мы сказали ответ задачи. Далее учитель подводит детей к обобщению только что проведенного анализа задачи: Какие же части, элементы задачи мы выделили? (условие, вопрос, решение, ответ). Схема дополняется этими словами. На следующем уроке схема перед глазами детей. Задание учителя: Назовите части задачи. Далее ребята учатся составлять задачу по картинке, выделять условие, вопрос, решение и ответ задачи.

Вопрос о том, как научить детей устанавливать связи между данными и искомыми в текстовой задаче и в соответствии с этим выбрать, а затем выполнить арифметические действия, решается в методической науке по-разному. Все многообразие методических рекомендаций, связанных с обучением младших школьников решению задач рассматривается с точки зрения 2 х принципиально отличающихся друг от друга подходов.

Один подход нацелен на формирование у учащихся умения решать задачи определенных типов (видов). Дети сначала учатся решать простые задачи, а затем составные, включающие в себя различные сочетания простых задач. При этом подходе многие учащиеся решают задачи лишь по образцу. А, встретившись с задачей незнакомого типа, заявляют: “А мы такие задачи не решали”. В этом огромный недостаток первого подхода.

Дети сначала учатся решать простые задачи, а затем составные, включающие в себя различные сочетания простых задач. М.А. Бантова и Г.В. Бельтюкова выделяют 3 группы простых задач:

1. Задачи, при решении которых дети усваивают конкретный смысл каждого из арифметических действий.

2. Задачи, при решении которых учащиеся усваивают связь между компонентами и результатами арифметических действий.

3. Простые задачи, при решении которых раскрывается понятия разности и кратного отношения.

Разнообразить урок позволяют следующие виды задач (по Царевой)

1) Задачи, не требующие полного решения.

2) Установление соответствия между задачей и графической моделью.

3) Выбор среди данных задач нужной (3 задачи – 1 рисунок)

4) Выбор подходящей схемы (1 задача – 3 схемы)

5) Нахождение ошибок в схеме.

Читайте также:  Кровь после первого полового акта

6) Классификация простых задач по действиям, которыми они могут быть решены.

7) Выбор задач, ответ на вопрос которых может быть найден в заданной последовательности действий.

8) Обнаружение ошибок в решении.

9) В качестве творческого задания можно предлагать детям придумать задачу по графической схеме.

Цель другого подхода – научить детей выполнять семантический и математический анализ текстовых задач, выявить взаимосвязи между условием и вопросом, данными и искомыми и представлять эти связи в виде схематических и символических моделей. При этом подходе процесс решения задач (простых и со-ставных) рассматривается как переход от словесной модели к модели математической или схематической. В основе осуществления этого подхода лежит математический анализ текста. Учащиеся должны быть подготовлены к этой деятельности, поэтому знакомству младших школьников с текстовой задачей должна предшествовать специальная работа по формированию математических понятий и отношений. Также необходимо сформировать у младших школьников (до знакомства с задачей) те логические приемы мышления (анализ и синтез, сравнение, обобщение), которые обеспечивали бы их мыслительную деятельность в процессе решения задач. При этом подходе значительно сложнее подготовительная работа, но решение задач более осмысленно.

Вопрос 5. Определение отношений «больше на…» и «меньше на…» на множестве натуральных чисел, их теоретико-множественный смысл и способы моделирования. Методика формирования понятий «больше на…» и «меньше на…» в начальном курсе математики. Обучение младших школьников решению текстовых задач с данными отношениями.

В основе определения отношений «больше на» и «меньше на» лежит. понятие равночисленности множеств. Например, чтобы утверждать, что 6 больше 4 на 2, сравнивают два множества, устанавливая взаимно-однозначное соответствие между множеством Х, в котором 4 элемента, и подмножеством У1 другого множества У, в котором 6 элементов, и делают вывод: треугольников столько же, сколько кружков, и еще 2. Другими словами, треугольников на 2 больше, чем кружков.

Для установления отношений «больше», «меньше», «равно» между числами младшие школьники могут использовать предметные, графические и символические модели. Установление взаимно-однозначного соответствия между элементами двух множеств выступает в качестве математической основы действий на предметном уровне.

С понятиями «больше на» и «меньше на» учащиеся знакомятся на первых уроках в первом классе в процессе установления взаимно-однозначного соответствия между предметными множествами. Для установления взаимно-однозначного соответствия между предметными множествами используют:

1. Наложение элементов одного множества на элементы другого:

Каких фигур больше?

Каких фигур меньше?

На сколько больше?

На сколько меньше?

2. Расположение элементов одного множества под элементами другого:

Каких фигур больше?

Каких фигур меньше?

На сколько больше?

На сколько меньше?

3. Образование пар, т. е. соединение элемента одного множества с одним элементом другого:

Каких фигур больше?

Каких фигур больше?

На сколько больше?

На сколько меньше?

Понятия «больше на», «меньше на» используются для случаев присчитывания и отсчитывания по единице при знакомстве с новым числом. В результате выполнения различных упражнений на каждом отрезке натурального ряда чисел, связанных с получением следующего числа (5+1=6; 6-1=5), дети убеждаются в том, что числа упорядочены по величине: после числа 1 называют при счете число 2, которое больше него на 1; перед числом 2 называют число 1, которое меньше него на 1 и т.п.

При обучении младших школьников решению текстовых задач с данными отношениями используют графическое моделирование и установление взаимно-однозначных соответствий. Например, задача: «Коля сделал 4 флажка, а Витя – 7 флажков. На сколько флажков Витя сделал больше».

1. Рисунок: 2.Условный рисунок:

3. Чертеж: 4.Схематичный чертеж:

Отношение «больше на» означает, что во множестве флажков, сделанных Витей, столько же элементов, сколько их во множестве флажков, сделанных Колей и еще 4.

Учителю необходимо подвести детей к выводу: чтобы узнать, на сколько одно число больше или меньше другого, можно из большего вычесть меньшее.

Источник

Методическое пособие «система работы над текстовой арифметической задачей в начальной школе или как эффективно научить учащихся решать задачи» Учитель: Васильева Ольга Евгеньевна

Самым важным на этом этапе является формирование умения рассуждать тем или иным способом. Поиск плана решения задачи можно проводить двумя путями:

— аналитическим способом, рассуждая от вопроса к данным ( «Чтобы ответить на вопрос задачи, надо знать … и … );

— синтетическим, рассуждая от данных к вопросу.(«Мне известно … и …. По этим данным я могу узнать… и …).

Возможно использование их комбинации – аналитико-синтетического способа.

Чаще всего применяется аналитический способ рассуждения, но с точки зрения психологии в 1-2 классе ребёнку легче освоить синтетический способ разбора, так как в возрасте 6-8 лет формирование у ребёнка способности к синтезу несколько опережает формирование способности к анализу. На своих уроках я стараюсь использовать и аналитический, и синтетический способы разбора. Поиск и составление плана решения учащимися начинается с самостоятельного обдумывания, обсуждения в парах, группах, составления цепочек рассуждений.

1) Разбор от вопроса к данным ( аналитический способ)

Поиск плана решения данным способом начинается с вопроса задачи. Выясняется, что нужно узнать, чтобы ответить на вопрос задачи. Для этого необходимо найти какую-то величину. А что нужно знать, чтобы её найти? и т. д.

Чтобы помочь учащимся вести рассуждения аналитическим способом, можно использовать приём « ДЕРЕВО РАССУЖДЕНИЙ». Суть его заключается в том, что по ходу рассуждений строится схема, которая помогает учащимся увидеть, какие простые задачи следует выделить (если это задача составная), и каким будет план решения данной задачи.

1. « В зоопарке было 2 зебры. Привезли ещё несколько зебр. Сколько зебр привезли, если их стало в зоопарке 7 ?»

— На какой вопрос нужно ответить?

— Что нужно знать, чтобы ответить на вопрос задачи? (нужно знать, сколько зебр было и сколько зебр стало).

— Известно ли в задаче, сколько зебр было? ( известно: было 2 зебры).

— Известно ли, сколько зебр стало? (известно: стало 7 зебр).

— Как узнать, сколько привезли зебр? На сколько больше стало зебр? ( на 5)

— Значит, сколько привезли зебр? (5)

— Каким действием решим задачу, почему?

2 . «В зоопарке 5 обезьян, слонов на 3 меньше, а бизонов столько, сколько слонов и обезьян вместе. Сколько бизонов в зоопарке?»

— На какой вопрос нужно ответить?

— Что сказано о бизонах в тексте задачи?

— Что нужно знать, чтобы ответить на вопрос задачи? ( сколько обезьян и слонов вместе)

— Можем ли мы узнать, сколько обезьян и слонов вместе? (нет, не знаем, сколько слонов).

— Что сказано в тексте о слонах? ( слонов на 3 меньше, чем обезьян). Что значит на 3 меньше?

— Как узнать, сколько слонов? Почему выбрали действие вычитания?

— Теперь, можем ответить на вопрос задачи? Каким действием? Почему выбрали действие сложения?

— Какие простые задачи можно выделить в данной составной?

«ДЕРЕВО РАССУЖДЕНИЙ» ОТ ВОПРОСА К ДАННЫМ

Можно оформить рассуждения в таблице. Учитель выдаёт заготовки таблицы, в которые учащиеся записывают свои рассуждения. Такую работу целесообразно периодически проводить в 3, 4 классе.

сколько обезьян (5)

сколько обезьян (5)

на сколько слонов меньше, чем обезьян

2. Разбор от данных к вопросу (синтетический)

Синтетический способ характеризуется тем, что основным, направляющим вопросом при поиске плана решения задачи является вопрос о том, что можно найти по двум или нескольким известным в задаче числовым значениям (данным). По вновь полученным числовым данным и другим известным в задаче данным вновь ищется ответ на вопрос, что можно узнать по этим значениям. И так до ответа на вопрос задачи. Суть этого способа состоит в выделении учащимися простой задачи из составной и решении её.

« В зоопарке было 2 зебры. Привезли ещё несколько зебр. Сколько зебр привезли, если их стало 9».

— Что известно в задаче? ( сколько было зебр и сколько стало).

— Что можно узнать по этим данным? ( на сколько больше стало зебр)

— Как узнать, на сколько больше стало зебр? ( от 9 нужно отнять 2)

— Почему зебр стало больше? (привезли несколько зебр)

— Сколько зебр привезли?

«В зоопарке 5 обезьян, слонов на 3 меньше, чем обезьян, а бизонов столько, сколько обезьян и слонов вместе. Сколько бизонов в зоопарке?»

— Что известно в задаче? ( сколько обезьян;, на сколько слонов меньше, чем обезьян).

— Что можно узнать по этим данным? (сколько слонов). Какую задачу можно составить и решить?

— Как узнать, сколько слонов? ( от 5 отнять 3).

— Почему выбрали действие вычитания?

— Какие данные имеем теперь? (знаем, сколько обезьян и сколько слонов).

— Что можно узнать по этим данным? (сколько обезьян и слонов вместе). Какую задачу можно составить по этим данным?

— Как узнать, сколько слонов и обезьян вместе, каким действием? Почему сложением?

Источник

Приемы анализа содержания задачи

Решение текстовой задачи арифметическим способом — это сложная деятельность, содержание которой зависит как от конк­ретной задачи, так и от умений решающего. Тем не менее в ней можно выделить несколько этапов:

1. Восприятие и анализ содержания задачи.

2. Поиск и составление плана решения задачи.

3. Выполнение плана решения. Формулировка вывода о вы­полнении требования задачи (ответа на вопрос задачи).

4. Проверка решения и устранение ошибок, если они есть. Формулировка окончательного вывода о выполнении требова­ния задачи или ответа на вопрос задачи.

Следует подчеркнуть, что в реальном процессе решения задачи отмеченные этапы не имеют четких границ и не всегда выпол­няются одинаково полно. Так, иногда уже при восприятии задачи решающий может обнаружить, что данная задача — известного ему вида и он знает, как ее решать. В этом случае поиск реше­ния не вычленяется в отдельный этап и обоснование, каждого шага при выполнении первых трех этапов делает необязатель­ной проверку после выполнения решения. Однако полное, логи­чески завершенное решение обязательно содержит все этапы. А знание возможных приемов выполнения каждого из этапов делает процесс решения любой задачи осознанным и целенаправ­ленным, а значит, и более успешным.

Основная цель первого этапа решения — понимание ре­шающим в целом ситуации, описанной в задаче, понимание условия задачи, ее требования или вопроса, смысла всех терминов и знаков, имеющихся в тексте.

Читайте также:  Анализ платежеспособности предприятия примеры с выводами

Известно несколько приемов, применение которых способст­вует пониманию содержания задачи.

Прочитайте, например, такую задачу:

По дороге в одном и том же направлении идут два мальчи­ка. Вначале расстояние между ними было 2 км, но так как ско­рость идущего впереди мальчика 4 км/ч, а скорость второго 5 км/ч, то второй нагоняет первого. С начала движения до то­го, как второй мальчик догонит первого, между ними бегает со­бака со средней скоростью 8 км/ч. От идущего позади мальчика она бежит к идущему впереди, добежав, возвращается обратно и так бегает до тех пор, пока мальчики не окажутся рядом. Какое расстояние пробежит за все это время собака?

Разобраться в содержании этой задачи, вычленить условие и требование ее можно, если задать специальные вопросы по тексту и ответить на них.

1. О чем эта задача? (Задача о движении двух мальчиков и собаки. Это движение характеризуется для каждого его участника! скоростью, временем и пройденным расстоянием.)

2. Что требуется найти в задаче? (В задаче требуется найти расстояние, которое пробежит собака за все это время.)

3. Что обозначают слова «за все это время»? (В задаче го­ворится, что собака бегает между мальчиками «с начала движе­ния до того, как второй мальчик догонит первого». Поэтому слова’ «за все это время» означают «за все то время с начала движе­ния, в течение которого второй мальчик догонит первого».)

4. Что в задаче известно о движении каждого из участии, ков его? (В задаче известно, что: 1) мальчики идут в одном на-1 правлении; 2) до начала движения расстояние между мальчиками было 2 км; 3) скорость первого мальчика, идущего впереди, 4 км/ч; 4) скорость второго мальчика, идущего позади, 5 км/ч; 5) скорость бега собаки 8 км/ч; 6) время движения всех участ­ников одинаково: это время от начала движения, когда расстоя­ние между мальчиками было 2 км, до момента встречи мальчи­ков, т. е. до момента, когда расстояние между ними стало 0 км.)

5. Что в задаче неизвестно? (В задаче неизвестно, в течение какого времени второй мальчик догонит первого, т. е. неизвестно время движения всех его участников. Неизвестно также, с какой скоростью происходит сближение мальчиков. И неизвестно рас­стояние, которое пробежала собака — это требуется узнать в задаче.)

6. Что является искомым: число, значение величины, вид некоторого отношения? (Искомым является значение величины — расстояния, которое пробежала собака за общее для всех участни­ков время движения.)

Большую помощь в осмыслении содержания задачи и созда­нии основы для поиска решения задачи оказывает переформу­лировка — текста задачи — замена данного в нем описания ситуа­ции другим, сохраняющим все отношения, связи и количествен­ные характеристики, но более явно их выражающим. Особенно эффективно использование этого средства в сочетании с разбие­нием текста на смысловые части.

Направления переформулировки могут быть следующие: отбрасывание несущественной, излишней информации; замена описания некоторых понятий соответствующими терминами и, наоборот, замена некоторых терминов описанием смысла соот­ветствующих понятий; переорганизация текста задачи в форму, удобную для поиска решения. Результатом переформулировки должно быть выделение основных ситуаций. Так, заметна, что речь в приведенной выше задаче идет о движении, ее можно переформулировать следующим образом:

«Скорость первого мальчика 4 км/ч, а скорость догоняюще­го его второго мальчика 5 км/ч (первая часть задачи). Рас­стояние, на которое мальчики сблизились, 2 км (вторая часть). Время ходьбы мальчиков — это время, в течение которого второй мальчик догонит первого, т. е. в течение которого второй маль­чик пройдет на 2 км больше, чем первый (третья часть). Скорость fiera собаки 8 км/ч. Время бега собаки равно времени ходьбы мальчиков до встречи. Требуется определить расстояние, которое пробежала собака».

Рассмотрим еще такую задачу: «На двух полках книг было на 5 больше, чем на одной из них. Сколько книг было на другой полке?»

После первого прочтения текста кажется, что с задаче не­достает информации о книгах на другой полке. Но попробуем переформулировать задачу, раскрыв смысл отношения «на 5 книг больше». Получим следующий текст: «На двух полках книг столько же, сколько на первой полке, и еще 5 книг. Сколько книг на другой полке?» Переформулируем текст еще раз, заменив в нем слова «на двух полках» словами «на первой и второй полках вместе»: «На первой и второй полках вместе книг столько, сколько на первой полке, и еще 5. Сколько книг на второй пол­ке?» Возможно и дальнейшее уточнение: «Количество книг на первой и второй полках вместе — это количество книг на первой полке и еще 5 книг. Сколько книг на второй полке?»

Из этого текста уже ясно, что 5 книг — это и есть книги на другой полке. Таким образом, в данном случае переформули­ровка привела не только к пониманию содержания задачи, но и (после выполнения несложных логических рассуждений) позво­лила ответить на вопрос задачи.

Переформулированный текст часто бывает полезно записать схематически. Например, содержание первой задачи после форму­лировки можно записать в виде такой таблицы:

Схематическая запись переформулированного текста может иметь и иной вид. Рассмотрим задачу: «Турист проехал 6 ч на поезде со скоростью 56 км/ч. После этого ему осталось ехать в 4 раза больше того, что он проехал. Сколько всего километров он должен был проехать?»

После переформулировки текст может иметь следующий вид:

2) В ящике 100 кг пшена. После того как из ящика насыпали 2 мешка, в нем осталось 10% всего пшена. Сколько пшена на­сыпали в каждый мешок, если в один из них насыпали в 2 раза меньше, чем в другой?

3. Выясните, какой способ записи переформулированного тек­ста (краткая запись, таблица, схематический чертеж) наиболее эффективен для определения плана решения задачи:

С аэродрома вылетел вертолет со скоростью 210 км/ч. Через 2 ч с этого же аэродрома вылетел самолет, который через 3 ч после своего вылета перегнал вертолет на 840 км. Найдите ско­рость самолета.

Приемы поиска плана решения задачи и его выполнение

Одним из наиболее распространенных приемов поиска плана решения задачи арифметическими способами является разбор задачи по тексту (заданному или переформулированному).

Разбор задачи по тексту задачи проводится в виде цепочки рассуждений, которая может начинаться как от данных задачи, так и от ее вопросов.

При разборе задачи от данных к вопросу нужно выделить в тексте задачи два данных и на основе знания связи между ними (такие знания должны быть получены при выполнении первого этапа решения) определить, какое неизвестное может быть найде­но по этим данным и с помощью какого арифметического дейст­вия. Считая это неизвестное данным, надо вновь выделить два взаимосвязанных данных, определить неизвестное, которое может быть найдено по ним, а также соответствующее арифметическое действие и т. д., пока не будет выяснено действие, выполнение которого приводит к получению искомого.

Проведем такой разбор по тексту задачи, рассмотренной в п. 19: «Турист ехал 6 ч по 56 км/ч. Осталось проехать в 4 раза больше, чем проехал. Требуется узнать весь путь».

Рассуждения ведем от данных к вопросу: «Известно, что ту­рист ехал б ч по 56 км/ч. По этим данным можно узнать рас­стояние, которое проехал турист за 6 ч. Для этого достаточно ско­рость умножить на время. Зная пройденное расстояние и то, что оставшееся расстояние в 4 раза больше, можно найти, чему рав­но оставшееся расстояние. Для этого пройденное расстояние нуж­но умножить на 4 (увеличить в 4 раза). Зная, сколько километ­ров турист проехал и сколько ему осталось ехать, можем найти весь путь, выполнив сложение найденных отрезков пути. Итак, первым действием будем находить расстояние, которое турист проехал на поезде; вторым действием — расстояние, которое ему осталось проехать; третьим — весь путь».

При разборе задачи от вопроса к данным нужно обратить внимание на вопрос задачи и установить (на основе информации, полученной при анализе текста задачи), что достаточно узнать

для ответа на вопрос задачи.

Обратиться к условию и выяс­нить,

есть ли для этого необ­ходимые данные. Если таких данных нет или есть только одно данное, то установить, что нужно знать, чтобы найти недостающее данное (недостающие дан­ные), и т. д. Потом составляется план. Рассуждения при этом про­водятся в обратном порядке.

Проведем такой разбор той же задачи, строя цепочку рассуж­дений от вопроса к данным:

«В задаче требуется узнать весь путь. Мы установили, что весь путь состоит из двух частей. Значит, для выполнения тре­бования задачи достаточно знать, сколько километров турист проехал и сколько километров осталось проехать. И то и другое не­известно. Чтобы найти пройденный путь, достаточно знать время и скорость, с которой ехал турнет. Это в задаче известно. Ум­ножив скорость на время, узнаем пройденный путь. Оставшийся путь можно найти, увеличив пройденный путь в 4 раза (умножив на 4). Итак, вначале можно узнать пройденный путь, затем остав­шийся, после чего сложением найти весь путь».

Поиск решения задачи может проводиться по чертежуи по схема­тической записи, составленным на первом этапе.

Покажем, как можно осуществить поиск решения по чертежу. Рассмотрим задачу: «В бидоне было молоко. Сначала из него отлили половину и еще 5 л, а затем оставшегося молока. После этого в бидоне осталось 10 л. Сколько литров молока было в би­доне?»

Пусть отрезок АВ (рис. 16) изображает искомое. По чертежу видно, что этот отрезок разделен на две равные части: АО = ОВ, Отрезок АО состоит из нескольких частей. Причем видно, что от­резок, изображающий 10 л, содержит две из трех равных частей. Тогда один из них будет обозначать (10:2) л, т. е. 5 л. Теперь видно, что эта половина всего отрезка состоит из четырех рав­ных частей, каждая из которых изображает 5 л. Тогда для отве­та на вопрос задачи достаточно умножить 5 на 4 и на 2. Выпол­няя намеченный план, получим 10:2 = 5 (л), 5∙4∙2 = 40 (л).

План решения следующей задачи легко отыскивается после записи текста задачи при помощи таблицы.

Задача. Сколько деталей получится из 36 кг металла, если из 12 кг получается 8 деталей?

Источник

Adblock
detector