ОФС 1 5 3 0008 15 Определение содержания дубильных веществ в лекарственном растительном сырье и лекарственных

ДУБИЛЬНЫЕ ВЕЩЕСТВА

Дубильными веществами (танидами) называют растительные высокомолекулярные фенольные соединения, способные осаждать белки и обладающие вяжущим вкусом.

Термин “дубильные вещества” сложился исторически, благодаря способности этих соединений превращать сырую шкуру животных в прочную кожу, устойчивую к воздействию влаги и микроорганизмов. Использовать этот термин официально предложил в 1796 г Сеген для обозначения в экстрактах некоторых растений веществ, способных осуществлять процесс дубления.

Дубление — это сложное химическое взаимодействие танидов с молекулами коллагена — основного белка соединительной ткани. Дубящими свойствами обладают многоядерные фенолы, содержащие в молекуле более одного гидроксила. При плоском расположении танида на белковой молекуле между ними возникают устойчивые водородные связи:

Фрагмент молекулы белка Фрагмент молекулы танида

Прочность взаимодействия танида с белком зависит от числа водородных связей и лимитируется величиной молекулы полифенольного соединения. Молекулярная масса дубильных веществ может составлять до 20 000. При этом на 100 единиц молекулярной массы в танидах приходится по 1-2 фенольные оксигруппы. Поэтому количество образующихся водородных связей многочисленно и процесс дубления является необратимым. Гидрофобные радикалы, ориентированные во внешнюю среду, делают кожу недоступной для влаги и микроорганизмов.

Не все дубильные вещества способны к истинному дублению. Этим свойством отличаются соединения, имеющие молекулярную массу 1 000 и более. Полифенольные соединения с массой менее 1 000 не способны дубить кожу и обладают только вяжущим действием.

Дубильные вещества очень широко применяются в промышленности. Достаточно сказать, что мировое производство танидов превышает 1 500 000 тонн в год, а доля растительных танидов составляет до 50-60% от общего количества.

Распространение в растительном мире и роль дубильных веществ в растениях. Дубильные вещества широко встречаются у представителей покрыто- и голосемянных, водорослей, грибов, лишайников, в плаунах и папоротниках. Они содержатся во многих высших растениях, особенно двудольных. Наибольшее их количество выявлено в ряде представителей семейств Fabaceae, Myrtaceae, Rosaceae, Anacardiaceae, Fagaceae, Polygonaceae.

Дубильные вещества в растении находятся в клеточных вакуолях и при старении клеток адсорбируются на клеточных стенках. В больших количествах накапливаются в подземных органах, коре, но могут быть в листьях и плодах.

Дубильные вещества выполняют в растениях в основном защитные функции. При механическом повреждении тканей начинается усиленное образование дубильных веществ, сопровождающееся их окислительной конденсацией в поверхностных слоях, защищая тем самым растение от дальнейшего повреждения и негативного влияния болезнетворных микроорганизмов. Благодаря большому количеству фенольных гидроксилов дубильные вещества обладают выраженными бактериостатическими и фунгицидными свойствами, предохраняя тем самым растительные организмы от различных заболеваний.

Классификация дубильных веществ. В 1894 г. Г. Проктер, изучая конечные продукты пиролиза дубильных веществ, обнаружил 2 группы соединений — пирогалловые (образуется пирогаллол) и пирокатехиновые (при разложении образуется пирокатехин):

К. Фрейденберг в 1933 г. уточнил классификацию Г. Проктера. Он, как и Проктер, классифицировал дубильные вещества по конечным продуктам их распада, но не в условиях пиролиза, а при кислотном гидролизе. В зависимости от способности к гидролизу К. Фрейденберг предложил выделить две группы дубильных веществ: гидролизуемые и конденсированные. В настоящее время более часто пользуются класификацией К. Фрейденберга.

К группе гидролизуемых дубильных веществ относятся соединения, построенные по типу сложных эфиров и распадающиеся при кислотном гидролизе на составляющие компоненты. Центральным звеном чаще всего бывает глюкоза, реже — другие сахара или алициклические соединения (например, хинная кислота). Спиртовые гидроксилы центрального остатка могут быть связаны эфирной связью с галловой кислотой, образуя при этом группу галлотанинов, или эллаговой кислотой, образуя группу эллаготанинов.

Галлотанины — эфиры галловой кислоты, наиболее часто встречаемые в группе гидролизуемых дубильных веществ. Существуют моно-, ди-, три-, тетра-, пента- и полигаллоильные эфиры. Представителем моногаллоильных эфиров является b-D-глюкогаллин:

Примером полигаллоильных эфиров может служить китайский танин, структура которого впервые была установлена в 1963 г. Хэуорсом:

Эллаготанины являются сложными эфирами сахара и эллаговой кислоты или ее производными. Эллаговая кислота образуется при окислении двух молекул галловой кислоты до гексаоксидифеновой, которая тотчас же образует лактон – эллаговую кислоту:

Как и в предыдущем случае, сахарным компонентом эллаготанинов чаще всего выступает глюкоза.

Несахарные эфиры галловых кислот представляют собой сложные эфиры галловой кислоты и несахарного компонента, такого как хинная кислота, оксикоричная и др. Примером данной группы веществ может служить 3,4,5-тригаллоилхинная кислота.

Конденсированные дубильные вещества отличаются от гидролизуемых тем, что при кислотном гидролизе не происходит их расщепления на составляющие компоненты, а наоборот, под действием минеральных кислот образуются плотные красно-коричневые продукты полимеризации — флобафены.

Конденсированные дубильные вещества образованы главным образом катехинами и лейкоцианидинами, и, гораздо реже, другими восстановленными формами флавоноидов. Конденсированные дубильные вещества не относятся к группе «Гликозиды»: в конденсированных дубильных веществах сахарный компонент отсутствует.

Образование конденсированных дубильных веществ может происходить двумя путями. К. Фрейденберг (30-е годы XX в) установил, что образование конденсированных дубильных веществ — это неферментативный процесс аутоконденсации катехинов или лейкоцианидинов (или их перекрестная конденсация) в результате воздействия кислорода воздуха, тепла и кислой среды. Аутоконденсация сопровождается разрывом пиранового кольца катехинов и С-2 углеродный атом одной молекулы соединяется углерод-углеродной связью с С-6 или С-8 углеродным атомом другой молекулы. При этом может образовываться достаточно протяженная цепь:

По мнению другого ученого — Д. Хатуэя, конденсированные дубильные вещества могут образовываться в результате ферментативной окислительной конденсации молекул по типу “голова к хвосту” (кольцо А к кольцу В) или “хвост к хвосту” (кольцо В к кольцу В):

В растениях, содержащих конденсированные дубильные вещества, обязательно есть их предшественники — свободные катехины или лейкоцианидины. Часто встречаются смешанные конденсированные полимеры, состоящие из катехинов и лейкоцианидинов.

Как правило, в растениях одновременно присутствуют дубильные вещества как конденсированной, так и гидролизуемой групп.

Физико-химические свойства дубильных веществ . Дубильные вещества отличаются высокой молекулярной массой — до 20 000. Природные дубильные вещества, за небольшим исключением, известны до настоящего времени только в аморфном состоянии. Причина этого заключается в том, что эти вещества представляют собой смеси соединений, сходные по химической структуре, но различающиеся по молекулярной массе.

Дубильные вещества — это желтые или бурые соединения, образующие в воде коллоидные растворы. Растворимы в этаноле, ацетоне, бутаноле и не растворимы в растворителях с выраженной гидрофобностью — хлороформе, бензоле и т.п.

Галлотанины плохо растворимы в холодной воде и относительно хорошо — в горячей.

Дубильные вещества обладают оптической активностью, легко окисляются на воздухе.

Благодаря наличию фенольных гидроксилов осаждаются солями тяжелых металлов и образуют окрашенные соединения с Fe +3 .

Выделение дубильных веществ из растительного сырья. Поскольку дубильные вещества представляют собой смесь различных полифенолов, их выделение и анализ представляет определенную трудность.

Часто для получения суммы дубильных веществ сырье экстрагируют горячей водой (дубильные вещества плохо растворимы в холодной воде) и охлажденную вытяжку обрабатывают органическим растворителем (хлороформ, бензол и др.) для удаления липофильных веществ. Затем дубильные вещества осаждают солями тяжелых металлов с последующим разрушением комплекса серной кислотой или сульфидами.

Для получения фракции дубильных веществ, сходных по химической структуре, можно использовать экстракцию сырья диэтиловым эфиром, метиловым или этиловым спиртами с предварительным удалением липофильных компонентов с помощью растворителей с выраженной гидрофобностью – петролейным эфиром, бензолом, хлороформом.

Широко распространено выделение некоторых компонентов дубильных веществ осаждением из водных или водно-спиртовых растворов солями свинца. Полученные осадки затем обрабатывают разбавленной серной кислотой.

При выделении индивидуальных компонентов дубильных веществ используют хроматографические методы: адсорбционную хроматографию на целлюлозе, полиамиде; ионообменную на различных катионитах; распределительную на силикагеле; гельфильтрацию на молекулярных ситах.

Идентификацию индивидуальных компонентов дубильных веществ проводят с помощью хроматографии на бумаге или в тонком слое сорбента, с помощью спектрального анализа, качественных реакций и изучения продуктов расщепления.

Читайте также:  Какие альтернативы есть у гистероскопии

Качественный анализ дубильных веществ . Качественные реакции на дубильные вещества можно разделить на две группы: реакции осаждения и цветные реакции. Для проведения качественных реакций сырье, чаще всего, экстрагируют горячей водой.

Реакции осаждения. 1. При взаимодействии дубильных веществ с 1% раствором желатина, приготовленном на 10% растворе натрия хлорида, образуется осадок или возникает помутнение раствора. При добавлении избытка желатина помутнение исчезает.

2. Таниды дают обильные осадки с алкалоидами (кофеин, пахикарпин), а также некоторыми азотистыми основаниями (уротропин, новокаин, дибазол).

3. При взаимодействии с 10% раствором уксуснокислого свинца дубильные вещества гидролизуемой группы образуют хлопьевидный осадок.

4. Дубильные вещества конденсированной группы образуют хлопьевидный осадок в реакции с бромной водой.

Цветные реакции. Дубильные вещества гидролизуемой группы с раствором железоаммонийных квасцов образуют черно-синие окрашенные соединения, а конденсированной группы — черно-зеленые.

Если в растении одновременно содержатся дубильные вещества и гидролизуемой и конденсированной группы, то вначале гидролизуемые таниды осаждают 10% раствором ацетата свинца, осадок отфильтровывают, а затем проводят реакцию фильтрата с раствором железоаммонийных квасцов. Появление темно-зеленой окраски свидетельствует о наличии веществ конденсированной группы.

Количественное определение дубильных веществ . При том, что существует около 100 различных способов количественного определения дубильных веществ, точный количественный анализ этой группы биологически активных веществ затруднен.

Среди широко применяемых способ количественного определения дубильных веществ можно выделить следующие.

1. Гравиметрические — основаны на количественном осаждении дубильных веществ желатином, солями тяжелых металлов и т.п.

2. Титриметрические — основаны на окислительных реакциях, прежде всего с перманганатом калия.

3. Фотоэлектроколориметрические — основаны на способности дубильных веществ образовывать устойчивые окрашенные продукты реакции с солями окисного железа, фосфорновольфрамовой кислотой и т.д.

Государственной Фармакопеей X и XI изданий рекомендован титриметрический способ количественного определения дубильных веществ.

Источник

ОФС.1.5.3.0008.15 Определение содержания дубильных веществ в лекарственном растительном сырье и лекарственных растительных препаратах

Определение содержания дубильных веществ в лекарственном растительном сырье и лекарственных растительных препаратах проводят титриметрическим и/или спектрофотометрическим методами. Титриметрический метод заключается в определении суммы дубильных веществ в пересчете на танин, а спектрофотометрический метод позволяет определять сумму дубильных веществ в пересчете на пирогаллол.

Метод 1. Определение суммы дубильных веществ в пересчете на танин

Около 2 г (точная навеска) измельченного лекарственного растительного сырья или лекарственного растительного препарата, просеянного сквозь сито с отверстиями размером 3 мм, помещают в коническую колбу вместимостью 500 мл, заливают 250 мл нагретой до кипения воды и кипятят с обратным холодильником на электрической плитке с закрытой спиралью в течение 30 мин при периодическом перемешивании. Полученное извлечение охлаждают до комнатной температуры и фильтруют через вату в мерную колбу вместимостью 250 мл так, чтобы частицы сырья/препарата не попали в колбу, доводят объем раствора водой до метки и перемешивают. 25,0 мл полученного водного извлечения помещают в коническую колбу вместимостью 1000 мл, прибавляют 500 мл воды, 25 мл раствора индигосульфокислоты и титруют при постоянном перемешивании калия перманганата раствором 0,02 М до золотисто-желтого окрашивания.

Параллельно проводят контрольный опыт: в коническую колбу вместимостью 1000 мл помещают 525 мл воды, 25 мл раствора индигосульфокислоты и титруют при постоянном перемешивании калия перманганата раствором 0,02 М до золотисто-желтого окрашивания.

1 мл калия перманганата раствора 0,02 М соответствует 0,004157 г дубильных веществ в пересчете на танин.

Содержание суммы дубильных веществ в пересчете на танин в абсолютно сухом сырье в процентах (Х) вычисляют по формуле:

V – объем калия перманганата раствора 0,02 М, израсходованного на титрование водного извлечения, мл;

V1 — объем калия перманганата раствора 0,02 М, израсходованного на титрование в контрольном опыте, мл;

0,004157 – количество дубильных веществ, соответствующее 1 мл калия перманганата раствора 0,02 М (в пересчете на танин), г;

a – навеска сырья или лекарственного растительного препарата, г;

W – влажность лекарственного растительного сырья или лекарственного растительного препарата, %;

250 – общий объем водного извлечения, мл;

25 – объем водного извлечения, взятого для титрования, мл.

Примечание. Приготовление раствора индигосульфокислоты. 1 г индигокармина растворяют в 25 мл серной кислоты концентрированной, затем прибавляют дополнительно 25 мл серной кислоты концентрированной и разбавляют водой до 1000 мл, осторожно вливая полученный раствор в воду, в мерной колбе вместимостью 1000 мл, перемешивают.

Метод 2. Определение суммы дубильных веществ в пересчете на пирогаллол

Около 0,5 — 1,0 г (точную навеску или иную, указанную в фармакопейной статье или нормативной документации) измельченного лекарственного растительного сырья или лекарственного растительного препарата, просеянного сквозь сито с отверстиями размером 0,18 мм, помещают в коническую колбу вместимостью 250 мл, прибавляют 150 мл воды и кипятят на водяной бане с обратным холодильником в течение 30 мин. Полученное водное извлечение в колбе охлаждают до комнатной температуры, фильтруют через вату в мерную колбу вместимостью 250 мл так, чтобы частицы сырья не попали в колбу, доводят объем раствора водой до метки и перемешивают. Полученный раствор фильтруют через бумажный фильтр диаметром около 125 мм, отбрасывая первые 50 мл фильтрата.

Определение проводят в защищенном от света месте.

Определение суммы дубильных веществ. 5,0 мл фильтрата помещают в мерную колбу вместимостью 25 мл, доводят объем раствора водой до метки и перемешивают. 2,0 мл полученного раствора помещают в мерную колбу вместимостью 25 мл, прибавляют 1 мл фосфорномолибденововольфрамового реактива, 10 мл воды и доводят объем раствора до метки натрия карбоната раствором 10,6 % (испытуемый раствор). Через 30 мин измеряют оптическую плотность испытуемого раствора (А1) на спектрофотометре при длине волны 760 нм в кювете с толщиной слоя 10 мм, используя в качестве раствора сравнения воду.

Определение суммы дубильных веществ, не адсорбируемых кожным порошком. К 10,0 мл фильтрата прибавляют 0,1 г кожного порошка, перемешивают полученную смесь в течение 60 мин и фильтруют через бумажный фильтр. 5,0 мл полученного фильтрата помещают в мерную колбу вместимостью 25 мл, доводят объем раствора водой до метки и перемешивают. 2,0 мл полученного раствора помещают в мерную колбу вместимостью 25 мл, прибавляют 1 мл фосфорномолибденововольфрамового реактива, 10 мл воды, объем раствора доводят до метки натрия карбоната раствором 10,6 % и перемешивают (испытуемый раствор). Через 30 мин измеряют оптическую плотность испытуемого раствора (А2) на спектрофотометре при длине волны 760 нм в кювете с толщиной слоя 10 мм, используя в качестве раствора сравнения воду.

Параллельно измеряют оптическую плотность стандартного раствора.

2,0 мл раствора СО пирогаллола помещают в мерную колбу вместимостью 25 мл, прибавляют 1 мл фосфорномолибденововольфрамового реактива, 10 мл воды, доводят объем раствора до метки натрия карбоната раствором 10,6 % и перемешивают (стандартный раствор). Через 30 мин измеряют оптическую плотность стандартного раствора (А3) на спектрофотометре при длине волны 760 нм в кювете с толщиной слоя 10 мм, используя в качестве раствора сравнения воду.

Содержание суммы дубильных веществ в пересчете на пирогаллол в абсолютно сухом сырье в процентах (Х) вычисляют по формуле:

Содержание суммы дубильных веществ в пересчете на пирогаллол в абсолютно сухом сырье в процентах (Х) вычисляют по формуле

где

А1 – оптическая плотность испытуемого раствора при определении суммы дубильных веществ;

А2 оптическая плотность испытуемого раствора при определении суммы дубильных веществ, не адсорбируемых кожным порошком, в пересчете на пирогаллол;

А3 оптическая плотность стандартного раствора;

a — навеска лекарственного растительного сырья или лекарственного растительного препарата, г;

W – влажность лекарственного растительного сырья или лекарственного растительного препарата, %.

Примечание. Приготовление раствора СО пирогаллола. 0,05 г (точная навеска) СО пирогаллола помещают в мерную колбу вместимостью 100 мл, растворяют в воде, доводят объем раствора водой до метки, перемешивают. 5,0 мл полученного раствора помещают в мерную колбу вместимостью 100 мл, доводят объем раствора водой до метки и перемешивают. Раствор используют свежеприготовленным.

Читайте также:  Регрессионный анализ какие зависимости

Источник



Дубильные вещества: выделение из ЛРС и количественное определение (фармакопейный и весовой единый методы).

Выделение из ЛРС. Дубильные вещества – это смесь различных полифенолов, имеющих сложную структуру и очень лабильных, поэтому выделение и анализ отдельных компонентов дубильных веществ представляет большие трудности. Для получения суммы дубильных веществ ЛРС экстрагируют горячей водой, охлаждают, а затем экстракт обрабатывают последовательно:

— петролейным эфиром (очистка от хлорофилла, терпеноидов, липидов);

— диэтиловым эфиром, извлекающий катехины, оксикоричные кислоты и др фенолы

— этилацетатом, в который переходят лейкоантоцианидины, эфиры оксикоричной кислоты и др. Оставшееся водное извлечение с дубильными веществами и другими фенольными соединениями и фракциями 2 и 3 (диэтилового эфира и этилацетата) разделяют на индивидуальные компоненты с помлщью различных видов хроматографии. Используют:

а) адсорбционную хроматографию на колонках целлюлозы,

б) распределительную хроматографию на колонках селикагеля;

в) ионообменную хроматографию;

г) гель-фильтрацию на колонках сефадекса и др.

Идентификация индивидуальных дубильных веществ основана на сравнении Rf в хроматографических методах (на бумаге, в тонком слое сорбента), спектральных исследованиях, качественных реакциях и изучении продуктов расщепления (для гидролизуемых дубильных веществ).

Количественное определение дубильных веществ. можно разделить на гравиметрические, титриметрические и физико-химические.

Гравиметрические методы основаны на количественном осаждении дубильных веществ солями тяжелых металлов, желатиной или адсорбцией гольевым порошком. Весовой единый метод (ВЕМ) широко применяется в кожевенной промышленности. Метод основан на способности дубильных веществ образовывать прочные соединения с коллагеном кожи. Для этого полученное водное извлечение из ЛРС делят на две равные части. Одну часть выпаривают, высушивают и взвешивают. Вторую часть обрабатывают кожным (гольевым) порошком, фильтруют. Фильтрат выпаривают, высушивают и взвешивают. По разности сухих остатков 1 и 2 части (т.е. контроля и опыта) определяют содержание в растворе дубильных веществ.

Титриметрический метод, включенный в ГФ-ХI, именуемый как метод Левенталя-Нейбауэра, основан на окислении фенолных ОН-групп перманганатом калия (КMnO4) в присутствии индигосульфокислоты, являющейся регулятором и индикатором реакции. После полного окисления дубильных веществ начинает окисляться индигосульфокислота до изатина, в результате чего окраска раствора из синей переходит в золотисто-желтую. Другой титриметрический метод определения дубильных веществ – метод осаждения таннина сульфатом цинка с последующим комплексонометрическим титрованием трилоном Б в присутствии ксиленового оранжевого используется для определения таннина в листьях сумаха дубильного и скумпии кожевенной.

Физико-химические методы определения дубильных веществ:

1) колориметрические – ДВ дают окрашенные соединения с фос-молиб или фос-вольфрам к-ми в присутствие Na2CO3 или с реактивом Фолина-Дениса (на фенолы).

2) хромато-спектрофотометрические и нефелометрические методы, которые используют, главным образом, в научных исследованиях.

ЛР и ЛРС, содержащие дубильные вещества: горец змеиный, кровохлёбка лекарственная, бадан толстолистный, ольха черная и серая, дуб черешчатый, лапчатка прямостоячая, лабазник шестилепестный, черника, черёмуха.

Распространение в растительном мире, условия образования и роль растениях. Низкое содержание дубильных веществ отмечено у злаков. У двудольных некоторые семейства, – например, розоцветные, гречишные, бобовые, ивовые, сумаховые, буковые, вересковые, – насчитывают многие роды и виды, где содержание таннидов доходит до 20-30% и более. Наивысшее содержание дубильных веществ найдено в патологических образованиях – галлах (до 60-80%). Древесные формы богаче дубильными веществами, чем травянистые. Дубильные вещества неравномерно распределены по органам и тканям растений. Они накапливаются, главным образом, в коре и древесине деревьев и кустарников, а также в подземных частях травянистых многолетников; зеленые части растений значительно беднее дубильными веществами.

Дубильные вещества аккумулируются в вакуолях, а при старении клеток адсорбируются на клеточных стенках. Чаще всего в растениях встречается смесь гидролизуемых и конденсированных дубильных веществ с преобладанием соединений той или иной группы.

С возрастом растений количество дубильных веществ в них уменьшается. Растущие на солнце растения накапливают больше дубильных веществ, чем растущие в тени. В тропических растениях образуется значительно больше дубильных веществ, чем в растениях умеренных широт.

Био-медицинское действие и применение дубильных веществ. Дубильные вещества и содержащие их ЛР применяют в основном в качестве вяжущих, противовоспалительных и кровоостанавливающих средств.

А. Преимущественно гидролизуемые:

RhizomataBistortaeкорневища Змеевика.

Горец змеиный (змеиный корень, змеевик) (Polygonumbistorta ) – сем. Гречишные, Polygonaceae– многолетнее травянистое растение

Химический состав ЛРС: 15-25% дубильных веществ, преимущественно гидрлизуемых, галловую, эллаговую, аскорбиновую, фенолкарбоновые и органические кислоты, флавоноиды (кверцетин)

Основное действие ЛРС: вяжущее, антисептическое.

Характер применения. Настой и отвар применяется как вяжущее, кровоостанавливающее, антивоспалительное при небольших кровотеченях в ЖКТ, остром и хроническом воспалениях желудка, пищевых отравлениях, дерматозах, ожогах, воспалении полости рта, влагалища, геморрое.

FoliaCotinuscoggygriaeлистья Скумпии кожевенной.

Скумпия кожевенная (Cotinuscoggygria) – сем. Сумаховые, Anacardiaceae– ветвистый кустарник

Химический состав ЛРС. 0,2% эфирного масла (преобладает мирцен),

25% таннина, флавоноиды.

Основное действие ЛРС: вяжущее, дезинфицирующее.

Характер применения. используются для промышленного получения таннина и его препаратов, а также препарата Флакумин, представляющего собой сумму флавоноловых агликонов из листьев скумпии и обладает желчегонным действием.

FoliaRhuscoriariariaeлистья Сумаха дубильного.

Сумах дубильный (Rhuscoriariariae) – сем. Сумаховые, Anacardiaceae– кустарник

Химический состав ЛРС. дубильные вещества (25%, преобладает таннин), флавоноиды (2,5% − производные кверцитина, мирицетина, кемпферола), галловую и эллаговую кислоты.

Основное действие ЛРС: вяжущее, дезинфицирующее.

Характер применения. используются для промышленного получения таннина и его препаратов, используемых при лечении воспалительных процессов рото-носовой полости с помощью полосканий 2% водным или водно-глицериновым раствором, язв, ран и ожогов с помощью смазывания 3-10% растворами и мазями.

RhizomataBergeniaecrassifoliae – корневища Бадана толстолистного.

Бадан толстолистный (Bergeniacrassifolia) – сем. Камнеломковые, Saxifragaceae– многолетнее травянистое растение

Химический состав ЛРС: дубильные вещества (

27%, из них танин – 8-10%), галловая кислота, арбутин (до 22%), свободный гидрохинон (2-4%), кумарины, смолы, витамин С, сахар,

Характер применения. Настой и отвар из корней и корневищ бадана применяют в гинекологии, стоматологии для остановки кровотечений и как антивоспалительное, антисептическое, для лечения гастритов и язв желудка и 12-перстной кишки, в народной медицине – для лечения туберкулеза легких.

RhizomataetradicesSanguisorbae –корневища и корни Кровохлебки.

Кровохлебка лекарственная (Sangusorbaofficinalis) – сем. Розоцветные, Rosaceae– многолетнее травянистое растение

Химический состав ЛР: дубильные вещества, преимущественно гидролизуемые (12-20%), эллаговая, галловая кислоты, флавоноиды, антоцианы, катехины, сапонины.

Основное действие ЛРС: вяжущее, кровоостанавливающее.

Характер применения. Корневища и корни кровохлебки применяют в виде отвара и жидкого экстракта как вяжущее средство при желудочно-кишечных заболеваниях, энтероколите, поносе; как кровоостанавливающее при маточных и геморроидальных кровотечениях, кровохаркании.

FructusAlniсоплодия (шишки) Ольхи.

FoliaAlniincanaeлистья Ольхи серой.

FoliaAlniglutinosaлистья Ольхи черной.

Ольха черная(клейкая) (Alnusglutinosa), о. серая (Alnusincana) – сем. Березовые, Betulaceae– деревья или крупные кустарники.

Химический состав ЛРС: соплодия ольхи содержат дубильные вещества, галловая кислота (до 4%), флавоноиды. В листьях о. серой и о. черной содержатся флавоноиды.

Основное действие ЛРС: вяжущее, дезинфицирующее, антивоспалительное.

Характер применения. Отвар и настой применяют внутрь при острых и хронических энтеритах, колитах, дезинтерии; наружно – для полоскания горла, полости рта.

Б. Преимущественно конденсированные:

CorticesQuerqusкора дуба.

Дуб обыкновенный(Querqusrobur) – сем. Буковые, Fagaceae– мощное дерево

Химический состав ЛРС: дубильные вещества (10-20%, гидролизуемые и конденсированные), галловая, эллаговая кислоты, флавоноиды

Основное действие ЛРС: вяжущее, антибактериальное.

Характер применения. в виде отвара и настоя как наружное вяжущее и противововоспалительное средство для лечения стоматитов, гингивитов, воспалений ротовой полости, женских половых органов, ожогов кожи, потливости.

RhizomataTormentillaeкорневища лапчатки прямостоячей.

Лапчатка прямостоячаяPotentillaerecta– сем. Розоцветные,Rosaceae– многолетнее травянистое растение

Химический состав ЛРС. дубильные вещества (15-30%: преобладают конденсированные таннины), антоцианы, катехины.

Читайте также:  Что показывает анализ эффективности деятельности

Основное действие ЛРС: вяжущее, противовоспалительное.

Характер применения. Отвар и настой применяют внутрь как вяжущее и противовоспалительное средство при воспалительных состояниях рта и гортани, расстройствах ЖКТ, наружно при экземе.

Fructus Vaccinium mirtilli –плодычерники.

Cormi Vaccinii mytilli –побегичерники.

Черникаобыкновенная (Vaccinium myrtillus L.) –Вересковые, Ericaceae– мелкий кустарничек

Химический состав ЛРС. дубильные вещества (18-20%), в том числе конденсированные (5-12%), флавоноиды (гиперин, рутин), антоцианы .

Основное действие ЛРС: вяжущее, противовоспалительное.

Характер применения. чаще в виде настоя, отвара, киселя в связи с бродильными и гнилостными процессами в кишечнике, колитах. Показано, что плоды черники улучшают кровоснабжение глаз, стабилизируют структуру сетчатки, улучшают ночное зрение.

FructusPadi –плоды черемухи.

Черемуха обыкновенная (Padusavium), ч. азиатская (P. asiatica) – сем. Розоцветные,Rosaceae– дерево до 10 м высотой

Химический состав ЛРС: дубильные вещества (15%: преимущественно конденсированные), фенолкарбоновые и органические кислоты, витамин С, сахара, гликозиды терпеноидов

Основное действие ЛРС: вяжущее, дезинфицирующее.

Характер применения. Отвар и настой применяют как вяжущее средство и дезинфицирующее ЖКТ: при дизентерие, поносах. Плоды черемухи − компонет желудочных сборов.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Контрактное производство

Косметических средств, БАД к пище, фасовка пищевой продукции.

  • Вы здесь:  
  • Возможности
  • Качество
  • Методики и тесты
  • Метод количественного определения дубильных веществ в пересчете на танин

Метод количественного определения дубильных веществ в пересчете на танин

Общие понятия о дубильных веществах и их распространении

Дубильные вещества — это неядовитые и безазотистые, аморфные соединения, большинство из которых растворяются в воде и спирте, обладающие сильным вяжущим свойством.

Рисунок №1. Дубильные вещества

Дубильными веществами можно назвать растительные полифенольные соединения, молекулярная масса которых от 500 до 3000, они способны образовывать достаточно прочные связи с алкалоидами и белками, обладают дубящими свойствами.

Способность этих веществ основывается на их взаимодействии с коллагеном, образовывать устойчивую поперечносвязанную структуру кожи при помощи образования водородных соединений молекул коллагена и фенольных гидроксил дубильных веществ.

Впервые употребление термина «дубильные вещества» было использовано в 1796 году исследователем Франции Сегеном. С его помощью обозначалось присутствие в экстрактах растений веществ, которые способствуют осуществлению процесса дубления. Кожевенная промышленность заложила начало изучению химизма дубильных веществ. (Рис. 1)

Рисунок №2. Дуб

Иное определение дубильным веществам — «танниды». Оно происходит от латинской формы названия кельтского дуба — «тан». (Рисунок №2)

Первые исследования в научной области химизации дубильных веществ начинаются с середины 18 века.

Первая публикация — работа Гледича от 1754 года с названием «Об использовании плодов черники, как сырья для получения дубильных веществ». Первая монография была в 1913 году Деккера, обобщала весь известный материал по дубильным веществам.

Исследованием свойств дубильных веществ занимались крупнейшие зарубежные химики: Г. Проктер, Э. Фишер, К. Фрейденберг, П. Каррер.

В природе множество растений (в большинстве двудольные) которые могут содержать дубильные вещества. Растения, обладающие дубильными веществами, распространяются во всех поясах земного шара. Особо насыщены ими тропические пояса. Содержание в растениях дубящих веществ в зависимости от факторов: возраст, фаза развития, место произрастания, климатические и почвенные условия. С самым высоким содержанием ДВ признаны растения семейств: сумаховых, розоцветных, буковых, гречишных, вересковых, березовых.

Классификация дубильных веществ

Дубильные вещества (ДВ) по сути — это смесь разных полифенолов. Из-за многообразия их химического состава классифицировать однозначно невозможно.

Согласно классифицированию Г. Проктера (1894г) разделил дубильные вещества на две объёмные группы (в зависимости от природы продуктов, их разложении при температуре от 180 до 2000С (без поступления воздуха) (Таблица № 1):

1. пирогалловые (при разложении выделяют пирогаллол);
2. пирокатехиновые (образуют пирокатехин).

Таблица №1. Классификация дубильных веществ.

По результатам дальнейших исследований химии таннидов Фрейденберг (в 1933 г) скорректировал классификацию Проктера. Им было рекомендовано определить первую группу (пирогалловые ДВ) — как гидролизуемые, а вторую (пирокатехиновые ДВ) — как конденсированные.

В растениях, зачастую, содержатся смеси дубильных веществ относящиеся к обеим группам. В связи с этим, многие виды веществ дубильных в растениях однозначно нельзя отнести к одному выделенному типу. В наше время применяется классификация Фрейденберга, которая обозначила две основные группы: (Таблица №2):

1.Гидролизуемые (эфиры кислот и сахаров) (

  • • галлотанины — галловой ;
  • • несахаридные — фенолкарбоновых ;
  • • эллаготанины — эллаговой .

2. Конденсированные (негидролизуемые):

  • • флавандиолов — 3, 4;
  • • флаванолов — 3;
  • • оксистильбенов.

Таблица № 2. Группы дубильных веществ.

Дубильные вещества их применение.

/>
Рисунок №3. Свойства дубильных веществ.

Благодаря свойствам дубильных веществ образовывать связи с солями тяжелых металлов, сердечными гликозидами и алкалоидами их применяют при отравлении как антидоты. Действие основано на способности соединяться с белками и образовывать плотные альбуминаты. (Рис. 3)

Сырьё, богатое дубильными веществами, применяют для изготовления лекарственных препаратов, с целью использования как вяжущее, кровоостанавливающее, противовоспалительное, антимикробное средства. Данные вещества (гидролизуемые и конденсированные) применяются как антиоксиданты, потому как они проявляют высокую витаминную ценность, антигипоксические и антисклеротические действия. В больших дозах танниды обладают противоопухолевым эффектом, в средних дозах — радиосенсибилизирующим действие, а в маленьких — противолучевым. Содержание количества дубильных веществ в продукте необходимо контролировать. Для расчета количества дубильных веществ, присутствующих в БАД существуют разнообразные методики их определения:

1) Гравиметрический или весовой.

2) Титриметрический ( желатиновый, перманганатометрический).

3) Физико — химические:

Далее мы подробнее рассмотрим методику контроля качества, используемую в ООО «КоролёвФарм». Предприятие производит косметическую и пищевую продукцию, БАД к пище, экстракты. При производстве БАД проводится контроль микробиологический, физико-химический. Для проведения различных исследований на предприятии имеется лаборатория для проведения физико-химических испытаний .

Методика определения количества дубильных веществ в пересчете на танин.

Для этого точной навеской (около 2г) сырья измельченного, просеянного через сито(отверстия диаметра 3 мм), далее помещают в колбу вместимость которой 500 мл, необходимо залить 250 мл воды, нагретой до кипения и далее кипятить ещё 30 мин, периодически перемешивая используем электрическую плитку, чтобы спираль была закрытой и с обратным холодильником . Далее жидкость охлаждаем до комнатной температуры, процеживаем отделяя около 100мл в колбу размером 200-250 мл тщательно через вату, чтобы частички использованного сырья не попали в колбу. Пипеткой отбираем 25 мл от полученного содержимого в другой конический сосуд объёмом 750мл, прибавляем 500мл воды, 25 мл индикаторной жидкости. Титруем, постоянно перемешивая содержимое с перманганатом калия (0,02 моль на литр) до окрашивания в золотисто-желтый цвет .

Параллельно проводим контрольное испытание.

Соотношение 1 мл KMnO4 (0,02 моль на литр) равное 0,004157 г дубильным веществам .

Количество определяемых веществ (Х) (в %) с помощью формулы пересчитываем на абсолютное сухое сырьё :

где:

V— объём KMnO4 (0,02моль/л), использованного на титрование (миллилитры);

V 1 — объём KMnO4 (0,02моль/л), использованного на титрование в контрольном испытании (миллилитры);

0,04157 – количество дубильных веществ, (1 мл марганцевокислый (0,02моль/л) граммы);

m – масса сырья (граммы);

W – потеря массы при высушивании сырья (проценты);

250 –объём извлечения общий (миллилитры);

25 – объём извлеченного раствора для титрования (миллилитры).

Задачей проведения исследования стоит выяснить соответствуют ли полученные показатели заданным нормам. Концентрация дубильных веществ в продукте должна соответствовать определенным нормам, только в том случае будут подтверждены заявленные свойства продукта. Результаты испытания, удовлетворяющие требования НД, считают соответствующими и на исследуемый вид продукции выдается документ, подтверждающий соответствие качества продукта.

Источник

Adblock
detector