Методы анализа информации таблица



7. МЕТОДЫ АНАЛИЗА ИНФОРМАЦИИ

Анализ собранной информации – самый увлекательный этап исследования. Мы проверяем, насколько верны были исходные предположения, получаем ответы на заданные вопросы.

Цель этой главы – рассмотрение основных методов, но не техники анализа данных. Из технических средств мы используем наипростейшие, а при необходимости будем отсылать студентов-читателей к соответствующей литературе, которая указана в библиографии.

В современных исследованиях социальных явлений все чаще для получения информации применяются математико-статистические методы. Нельзя говорить об этих методах по отдельности (математические и статистические), ибо они не могут быть строго разделены и чаще всего применяются вместе. При обработке материалов социальных исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации, используется математико-статистический метод. В его пределах широко применяются следующие конкретные методики.

Регистрация — выявление определенного качества у явлений данного класса и подсчет количества по наличию или отсутствию данного качества (например, количество успевающих и неуспевающих учеников).

Ранжирование – расположение собранных данных в определенной последовательности (убывания или нарастания зафиксированных показателей), определение места в этом ряду изучаемых объектов (например, составление списка учеников в зависимости от числа пропущенных занятий).

Шкалирование – присвоение баллов или других цифровых показателей исследуемым характеристикам. Этим достигается большая определенность. Известны четыре основные градации измерительных шкал: 1) шкалы наименований (или номинальные); 2) шкалы порядка (или ранговые); 3) интервальные шкалы; 4) шкалы отношений.

Шкалы наименований. Числа и другие обозначения в них используются чисто символически. Они, по сути, представляют собой наименования какого-либо класса объектов. Их единственная математическая характеристика – принадлежность: принадлежит ли исследуемый объект к данному классу или нет. Примеры номинальных шкал: список специальностей, перечисление характеристик учеников, причин неуспеваемости и т.д.

В порядковых (ранговых) шкалах устанавливается порядок следования, отношения «больше» и «меньше». Примерами их применения служит ранжирование типа «выше ростом», «больше пятерок», «меньше пропусков» и т.д.

Интервальная шкала предусматривает определенные расстояния между отдельными (двумя любыми) числами на шкале, а в шкале отношений, кроме того, определена еще и нулевая точка (точка отсчета). Например, шкалы термометров, вольтметров.

Современная математическая статистика представляет собой большую и сложную систему знаний. Нельзя рассчитывать на то, что каждый исследователь овладеет этими знаниями. Между тем статистика нужна соционому постоянно в его повседневной работе. Специалисты-статистики разработали целый комплекс простых методов, которые совершенно доступны любому человеку, не забывшему то, что он выучил еще в средней школе.

В этой главе даются простейшие методы математической статистики. Уместное, грамотное применение этих методов позволит исследователю, проведя начальную обработку данных, получить общую картину того, что дают количественные результаты его научной работы, оперативно проконтролировать ход исследования.

Для лучшего усвоения материала рассмотрим основные статистические понятия.

Описательная статистика – получение статистических показателей, с помощью которых обобщаются характеристики только наблюдаемой совокупности. Задача ее заключается в том, чтобы дать сжатую и концентрированную характеристику изучаемого явления. Единицы совокупности обладают определенными свойствами, качествами, которые могут быть наблюдаемы или измерены. Эти свойства принято называть признаками. Например, признаки человека: возраст, образование, занятие, рост, вес, семейное положение и т.д.

Понятие статистики – общественная наука, имеющая целью сбор, упорядочивание, анализ и сопоставление данных, относящихся к самым разнообразным массовым явлениям. Статистика изучает явления через их признаки: чем более однородна совокупность, тем больше общих признаков имеют ее единицы, тем меньше варьируют их значения. Признаки различаются способами их измерения и другими особенностями, влияющими на приемы статистического изучения. Это дает основание для классификации признаков (табл. 7.1).

Описательные признаки выражаются словесно: национальность человека, разновидность почв, материал стен здания. Описательные признаки подразделяются на номинальные и порядковые. Эти термины взяты из теории измерений. Отличия между ними в том, что номинальные – это описательные признаки, по которым нельзя ранжировать данные, тогда как порядковые — те, по которым можно ранжировать, упорядочивать данные.

Классификация признаков в статистике

по характеру выражения

по отношению к характеризуемому объекту

по характеру вариации

по отношению ко времени

Вторичные или расчетные

Например, пользуясь оценками экспертов, ранжируют фигуристов по технике и артистичности исполнения программы или работников по мастерству.

Количественные признаки выражены числами.

Они играют преобладающую роль в статистике. Таковы возраст человека, заработная плата рабочих, население города и т.д.

Первичные признаки характеризуют единицу совокупности в целом. Это абсолютные величины. Они могут быть измерены, сосчитаны, взвешены. Они существуют сами по себе, независимо от их статистического изучения. Таковы численность населения города, число автомобилей, произведенных в стране, площадь дачного участка.

Вторичные, или расчетные, признаки не измеряются непосредственно, а рассчитываются. Они являются продуктами человеческого сознания, результатом познания изучаемого объекта. Например, производительность труда, себестоимость единицы продукции, урожайность и т.д. Вторичный – не означает второстепенный. Термин определяет только путь познания: сначала надо измерить значения первичных признаков, а уже потом, во вторую очередь, на основе первичных признаков рассчитать значения вторичных.

Прямые (непосредственные) признаки – это свойства, непосредственно присущие тому объекту, который ими характеризуется. Таковы возраст человека, численность студентов университета, объем продукции завода.

Косвенные признаки являются свойствами, присущими не самому объекту, а другим совокупностям, относящимся к объекту, входящему в него. Например, успеваемость студентов как косвенный признак университета. Хотя это успеваемость не университета, а студентов – это их прямой признак, но ведь успеваемость характеризует и университет, которому принадлежат эти студенты.

Альтернативные признаки могут принимать только два значения. Таковыми являются признаки обладания или необладания чем-то. Например, все садовые участки по признаку наличия посадок вишни можно разделить на имеющие посадки вишни и не имеющие их. Альтернативным признаком являются пол человека (мужчина – женщина), место проживания (город – село).

Дискретные признаки – это количественные признаки, которые могут принимать только отдельные значения, без промежуточных значений между ними – чаще целочисленные. Например, число членов семьи, число комнат в квартире, число этажей в доме.

Непрерывные, точнее, непрерывно варьирующие признаки способны принимать любые значения, конечно, в определенных границах. К непрерывным относятся расчетные вторичные признаки. Ведь их значения – результат деления, а оно может приводить к любым числам – целым, дробным.

Моментные признаки характеризуют изучаемый объект в какой-то момент времени, установленный планом исследования. Они существуют на любой момент времени и характеризуют наличие чего-либо: численность населения, размеры жилой площади семьи Х и т.д.

Интервальные признаки – это признаки, характеризующие результаты процессов. Поэтому их значения могут возникнуть только за интервал времени: год, месяц, сутки, но не на момент времени. Например, число родившихся, умерших (за год).

Рассмотрим отдельные приемы анализа эмпирической информации, позволяющие грамотно обрабатывать и организовывать материал.

Статистической совокупностью будем называть массовые социальные явления и процессы, изучаемые социономами. Эти совокупности состоят из отдельных единиц (объектов), свойства которых в статистике описываются при помощи признаков, или переменных. Отдельные единицы статистической совокупности объединяются в группы при помощи метода группировки. Это позволяет «сжать» информацию, полученную в ходе наблюдения, и на этой основе выявить закономерности, присущие изучаемому явлению.

Группировка и классификация – элементарные процедуры упорядочения данных, предваряющие их анализ. С помощью этих действий мы «уплотняем» информацию, как бы расширяем области подобия и устанавливаем новые границы различий в массе эмпирических данных, не выходя при этом за пределы индикативных свойств.

Группировкой называют распределение множества единиц изучаемой совокупности на группы по определенным существенным для них признакам. Приемы проведения статистических группировок весьма разнообразны. Это связано с разными задачами, которые в соответствии с целью исследования ставятся перед группировками. Группировка лежит в основе всей дальнейшей работы с собранной информацией. На основе группировки рассчитываются сводные показатели по группам, появляется возможность их сравнения, анализа причин различий между группами, изучения взаимосвязей между признаками. Если рассчитать сводные показатели только по совокупности, то мы не сможем уловить ее структуры, роли отдельных групп, их специфики.

Таким образом, значение группировки состоит в том, что этот метод обеспечивает обобщение данных, представление их в компактном, обозримом виде; создает основу для последующей сводки и анализа данных.

Группировочным признаком называется признак, по которому проводится разбивка единиц совокупности на отдельные группы. Его часто называют основанием группировки. В основание группировки могут быть положены как количественные, так и качественные признаки. Первые имеют числовое выражение (курс доллара в рублях, возраст человека, денежный доход семьи и т.д.), а вторые отражают состояние единицы совокупности (пол человека, его национальность, семейное положение и т.д.). После определения основания группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность. Число групп зависит от задач исследования и вида признака, положенного в основание группировки, численности совокупности, степени вариации признака. При построении группировки по качественному признаку групп, как правило, будет столько, сколько имеется градаций, видов, состояний у этого признака. Например, в случае проведения группировки населения по полу можно образовать только две группы: мужчины и женщины.

Читайте также:  Забор материала для бактериологического посева

Группировка называется простой (монотетической), если для ее построения используется один группировочный признак. Перекрестная группировка – это связывание данных, предварительно упорядоченных по двум признакам. Одна из задач перекрестной группировки – поиск устойчивых связей, выявляющих структурные свойства изучаемого явления. Например, выявление типических соотношений возрастов мужей и жен. Если группировка проводится по нескольким признакам, она называется сложной (политетической).

От группировок следует отличать классификацию. Классификацией называется систематизированное распределение явлений и объектов на определенные группы, классы, разряды на основании их сходства и различия.

Отличительной чертой классификации является, во-первых, то, что в ее основу кладется качественный признак. Во-вторых, классификации стандартны. Они устанавливаются органами государственной и международной статистики.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Источник

Процесс анализа данных

Анализ данных можно описать как процесс, состоящий из нескольких шагов, в которых сырые данные превращаются и обрабатываются с целью создать визуализации и сделать предсказания на основе математической модели.

Анализ данных — это всего лишь последовательность шагов, каждый из которых играет ключевую роль для последующих. Этот процесс похож на цепь последовательных, связанных между собой этапов:

  • Определение проблемы;
  • Извлечение данных;
  • Подготовка данных — очистка данных;
  • Подготовка данных — преобразование данных;
  • Исследование и визуализация данных;
  • Предсказательная модель;
  • Проверка модели, тестирование;
  • Развертывание — визуализация и интерпретация результатов;
  • Развертывание — развертывание решения.

Определение проблемы

Процесс анализа данных начинается задолго до сбора сырых данных. Он начинается с проблемы, которую необходимо сперва определить, а затем и решить.

Определить ее можно только сосредоточившись на изучаемой системе: механизме, приложении или процессе в целом. Исследование может быть предназначено для лучшего понимания функционирования системы, но его лучше спроектировать так, чтобы понять принципы поведения и впоследствии делать предсказания или выбор (осознанный).

Процессы определения и документации результатов научной проблемы или бизнеса нужны для того, чтобы сосредоточить анализ на получении результатов.

На самом деле, всеобъемлющее и исчерпывающее исследование системы — это сложный процесс, и почти всегда нет достаточного количества информации, с которой можно начать. Поэтому определение проблемы и особенно планирование приводят к появлению руководящих принципов, которым необходимо следовать в течение всего проекта.

Когда проблема определена и задокументирована, можно двигаться к этапу планирования проекта анализа данных. Планирование необходимо для понимания того, какие профессионалы и ресурсы понадобятся для выполнения требований проекта максимально эффективно. Таким образом задача — рассмотреть те вопросы в области, которые касаются решения этой проблемы Необходимо найти специалистов с разными интересами и установить ПО, нужное для анализа данных.

Построение хорошей команды — один из ключевых факторов успешного анализа данных.

Также во время фазы планировки выбирается эффективная команда. Такие команды должны быть междисциплинарными, чтобы у них была возможность решать проблемы, рассматривая данные с разных точек зрения.

Извлечение данных

Когда проблема определена, первый шаг для проведения анализа — получение данных. Они должны быть выбраны с одной базовой целью — построение предсказательной модели. Поэтому выбор данных — также важный момент для успешного анализа.

Данные должны максимально отражать реальный мир — то, как система реагирует на него. Например, использовании больших наборов сырых данных, которые были собраны неграмотно, это привести либо к неудаче, либо к неопределенности.

Поэтому недостаточное внимание, уделенное выбору данных или выбор таких, которые не представляют систему, приведет к тому, что модели не будут соответствовать изучаемым системам.

Поиск и извлечение данных часто требует интуиции, границы которой лежат за пределами технических исследований и извлечения данных. Этот процесс также требует понимания природы и формы данных, предоставить которое может только опыт и знания практической области проблемы.

Вне зависимости от количества и качества необходимых данных важный вопрос — использование лучших источников данных.

Если средой изучения выступает лаборатория (техническая или научная), а сгенерированные данные экспериментальные, то источник данных легко определить. В этом случае речь идет исключительно о самих экспериментах.

Но при анализе данных невозможно воспроизводить системы, в которых данные собираются исключительно экспериментальным путем, во всех областях применения. Многие области требуют поиска данных в окружающем мире, часто полагаясь на внешние экспериментальные данные или даже на сбор их с помощью интервью и опросов.

В таких случаях поиск хорошего источника данных, способного предоставить все необходимые данные, — задача не из легких. Часто необходимо получать данные из нескольких источников данных для устранения недостатков, выявления расхождений и с целью сделать данные максимально общими.

Интернет — хорошее место для начала поиска данных. Но большую часть из них не так просто взять. Не все данные хранятся в виде файла или базы данных. Они могут содержаться в файле HTML или другом формате. Тут на помощь приходит техника парсинга. Он позволяет собирать данные с помощью поиска определенных HTML-тегов на страницах. При появлении таких совпадений специальный софт извлекает нужные данные. Когда поиск завершен, у вас есть список данных, которые необходимо проанализировать.

Подготовка данных

Из всех этапов анализа подготовка данных кажется наименее проблемным шагом, но на самом деле требует наибольшего количества ресурсов и времени для завершения. Данные часто собираются из разных источников, каждый из которых может предлагать их в собственном виде или формате. Их нужно подготовить для процесса анализа.

Подготовка данных включает такие процессы:

  • получение,
  • очистка,
  • нормализация,
  • превращение в оптимизированный набор данных.

Обычно это табличная форма, которая идеально подходит для этих методов, что были запланированы на этапе проектировки.

Многие проблемы могут возникнуть при появлении недействительных, двусмысленных или недостающих значений, повторении полей или данных, несоответствующих допустимому интервалу.

Изучение данных/визуализация

Изучение данных — это их анализ в графической или статистической репрезентации с целью поиска моделей или взаимосвязей. Визуализация — лучший инструмент для выделения подобных моделей.

За последние годы визуализация данных развилась так сильно, что стала независимой дисциплиной. Многочисленные технологии используются исключительно для отображения данных, а многие типы отображения работают так, чтобы получать только лучшую информацию из набора данных.

Исследование данных состоит из предварительного изучения, которое необходимо для понимания типа и значения собранной информации. Вместе с информацией, собранной при определении проблемы, такая категоризация определяет, какой метод анализа данных лучше всего подойдет для определения модели.

Эта фаза, в дополнение к изучению графиков, состоит из следующих шагов:

  • Обобщение данных;
  • Группировка данных;
  • Исследование отношений между разными атрибутами;
  • Определение моделей и тенденций;
  • Построение моделей регрессионного анализа;
  • Построение моделей классификации.

Как правило, анализ данных требует обобщения заявлений касательно изучаемых данных.

Обобщение — процесс, при котором количество данных для интерпретации уменьшается без потери важной информации.

Кластерный анализ — метод анализа данных, используемый для поиска групп, объединенных общими атрибутами (также называется группировкой).

Еще один важный этап анализа — идентификация отношений, тенденций и аномалий в данных. Для поиска такой информации часто нужно использовать инструменты и проводить дополнительные этапы анализа, но уже на визуализациях.

Другие методы поиска данных, такие как деревья решений и ассоциативные правила, автоматически извлекают важные факты или правила из данных. Эти подходы используются параллельно с визуализацией для поиска взаимоотношений данных.

Предсказательная (предиктивная) модель

Предсказательная аналитика — это процесс в анализе данных, который нужен для создания или поиска подходящей статистической модели для предсказания вероятности результата.

После изучения данных у вас есть вся необходимая информация для развития математической модели, которая кодирует отношения между данными. Эти модели полезны для понимания изучаемой системы и используются в двух направлениях.

Первое — предсказания о значениях данных, которые создает система. В этом случае речь идет о регрессионных моделях.

Читайте также:  Яйца глист как взять анализ

Второе — классификация новых продуктов. Это уже модели классификации или модели кластерного анализа. На самом деле, можно разделить модели в соответствии с типом результатов, к которым те приводят:

  • Модели классификации: если полученный результат — качественная переменная.
  • Регрессионные модели: если полученный результат числовой.
  • Кластерные модели: если полученный результат описательный.

Простые методы генерации этих моделей включают такие техники:

  • линейная регрессия,
  • логистическая регрессия,
  • классификация,
  • дерево решений,
  • метод k-ближайших соседей.

Но таких методов много, и у каждого есть свои характеристики, которые делают их подходящими для определенных типов данных и анализа. Каждый из них приводит к появлению определенной модели, а их выбор соответствует природе модели продукта.

Некоторые из методов будут предоставлять значения, относящиеся к реальной системе и их структурам. Они смогут объяснить некоторые характеристики изучаемой системы простым способом. Другие будут делать хорошие предсказания, но их структура будет оставаться «черным ящиком» с ограниченной способностью объяснить характеристики системы.

Проверка модели

Проверка (валидация) модели, то есть фаза тестирования, — это важный этап. Он позволяет проверить модель, построенную на основе начальных данных. Он важен, потому что позволяет узнать достоверность данных, созданных моделью, сравнив их с реальной системой. Но в этот раз вы берете за основу начальные данные, которые использовались для анализа.

Как правило, при использовании данных для построения модели вы будете воспринимать их как тренировочный набор данных (датасет), а для проверки — как валидационный набор данных.

Таким образом сравнивая данные, созданные моделью и созданные системой, вы сможете оценивать ошибки. С помощью разных наборов данных оценивать пределы достоверности созданной модели. Правильно предсказанные значения могут быть достоверны только в определенном диапазоне или иметь разные уровни соответствия в зависимости от диапазона учитываемых значений.

Этот процесс позволяет не только в числовом виде оценивать эффективность модели, но также сравнивать ее с другими. Есть несколько подобных техник; самая известная — перекрестная проверка (кросс-валидация). Она основана на разделении учебного набора на разные части. Каждая из них, в свою очередь, будет использоваться в качестве валидационного набора. Все остальные — как тренировочного. Так вы получите модель, которая постепенно совершенствуется.

Развертывание (деплой)

Это финальный шаг процесса анализа, задача которого — предоставить результаты, то есть выводы анализа. В процессе развертывания бизнес-среды анализ является выгодой, которую получит клиент, заказавший анализ. В технической или научной средах результат выдает конструкционные решения или научные публикации.

Развертывание — это процесс использования на практике результатов анализа данных.

Есть несколько способов развертывания результатов анализа данных или майнинга данных. Обычно развертывание состоит из написания отчета для руководства или клиента. Этот документ концептуально описывает полученные результаты. Он должен быть направлен руководству, которое будет принимать решения. Затем оно использует выводы на практике.

В документации от аналитика должны быть подробно рассмотрены следующие темы:

  • Результаты анализа;
  • Развертывание решения;
  • Анализ рисков;
  • Измерения влияния на бизнес.

Когда результаты проекта включают генерацию предсказательных моделей, они могут быть использованы в качестве отдельных приложений или встроены в ПО.

Источник

Методы анализа информации таблица

Анализ данных можно описать как процесс, состоящий из нескольких шагов, в которых сырые данные превращаются и обрабатываются с целью создать визуализации и сделать предсказания на основе математической модели.

Анализ данных — это всего лишь последовательность шагов, каждый из которых играет ключевую роль для последующих. Этот процесс похож на цепь последовательных, связанных между собой этапов:

  • Определение проблемы;
  • Извлечение данных;
  • Подготовка данных — очистка данных;
  • Подготовка данных — преобразование данных;
  • Исследование и визуализация данных;
  • Предсказательная модель;
  • Проверка модели, тестирование;
  • Развертывание — визуализация и интерпретация результатов;
  • Развертывание — развертывание решения.

Определение проблемы

Процесс анализа данных начинается задолго до сбора сырых данных. Он начинается с проблемы, которую необходимо сперва определить, а затем и решить.

Определить ее можно только сосредоточившись на изучаемой системе: механизме, приложении или процессе в целом. Исследование может быть предназначено для лучшего понимания функционирования системы, но его лучше спроектировать так, чтобы понять принципы поведения и впоследствии делать предсказания или выбор (осознанный).

Процессы определения и документации результатов научной проблемы или бизнеса нужны для того, чтобы сосредоточить анализ на получении результатов.

На самом деле, всеобъемлющее и исчерпывающее исследование системы — это сложный процесс, и почти всегда нет достаточного количества информации, с которой можно начать. Поэтому определение проблемы и особенно планирование приводят к появлению руководящих принципов, которым необходимо следовать в течение всего проекта.

Когда проблема определена и задокументирована, можно двигаться к этапу планирования проекта анализа данных. Планирование необходимо для понимания того, какие профессионалы и ресурсы понадобятся для выполнения требований проекта максимально эффективно. Таким образом задача — рассмотреть те вопросы в области, которые касаются решения этой проблемы Необходимо найти специалистов с разными интересами и установить ПО, нужное для анализа данных.

Построение хорошей команды — один из ключевых факторов успешного анализа данных.

Также во время фазы планировки выбирается эффективная команда. Такие команды должны быть междисциплинарными, чтобы у них была возможность решать проблемы, рассматривая данные с разных точек зрения.

Извлечение данных

Когда проблема определена, первый шаг для проведения анализа — получение данных. Они должны быть выбраны с одной базовой целью — построение предсказательной модели. Поэтому выбор данных — также важный момент для успешного анализа.

Данные должны максимально отражать реальный мир — то, как система реагирует на него. Например, использовании больших наборов сырых данных, которые были собраны неграмотно, это привести либо к неудаче, либо к неопределенности.

Поэтому недостаточное внимание, уделенное выбору данных или выбор таких, которые не представляют систему, приведет к тому, что модели не будут соответствовать изучаемым системам.

Поиск и извлечение данных часто требует интуиции, границы которой лежат за пределами технических исследований и извлечения данных. Этот процесс также требует понимания природы и формы данных, предоставить которое может только опыт и знания практической области проблемы.

Вне зависимости от количества и качества необходимых данных важный вопрос — использование лучших источников данных.

Если средой изучения выступает лаборатория (техническая или научная), а сгенерированные данные экспериментальные, то источник данных легко определить. В этом случае речь идет исключительно о самих экспериментах.

Но при анализе данных невозможно воспроизводить системы, в которых данные собираются исключительно экспериментальным путем, во всех областях применения. Многие области требуют поиска данных в окружающем мире, часто полагаясь на внешние экспериментальные данные или даже на сбор их с помощью интервью и опросов.

В таких случаях поиск хорошего источника данных, способного предоставить все необходимые данные, — задача не из легких. Часто необходимо получать данные из нескольких источников данных для устранения недостатков, выявления расхождений и с целью сделать данные максимально общими.

Интернет — хорошее место для начала поиска данных. Но большую часть из них не так просто взять. Не все данные хранятся в виде файла или базы данных. Они могут содержаться в файле HTML или другом формате. Тут на помощь приходит техника парсинга. Он позволяет собирать данные с помощью поиска определенных HTML-тегов на страницах. При появлении таких совпадений специальный софт извлекает нужные данные. Когда поиск завершен, у вас есть список данных, которые необходимо проанализировать.

Подготовка данных

Из всех этапов анализа подготовка данных кажется наименее проблемным шагом, но на самом деле требует наибольшего количества ресурсов и времени для завершения. Данные часто собираются из разных источников, каждый из которых может предлагать их в собственном виде или формате. Их нужно подготовить для процесса анализа.

Подготовка данных включает такие процессы:

  • получение,
  • очистка,
  • нормализация,
  • превращение в оптимизированный набор данных.

Обычно это табличная форма, которая идеально подходит для этих методов, что были запланированы на этапе проектировки.

Многие проблемы могут возникнуть при появлении недействительных, двусмысленных или недостающих значений, повторении полей или данных, несоответствующих допустимому интервалу.

Изучение данных/визуализация

Изучение данных — это их анализ в графической или статистической репрезентации с целью поиска моделей или взаимосвязей. Визуализация — лучший инструмент для выделения подобных моделей.

За последние годы визуализация данных развилась так сильно, что стала независимой дисциплиной. Многочисленные технологии используются исключительно для отображения данных, а многие типы отображения работают так, чтобы получать только лучшую информацию из набора данных.

Читайте также:  Применение ABC анализа в изучении управленческих систем

Исследование данных состоит из предварительного изучения, которое необходимо для понимания типа и значения собранной информации. Вместе с информацией, собранной при определении проблемы, такая категоризация определяет, какой метод анализа данных лучше всего подойдет для определения модели.

Эта фаза, в дополнение к изучению графиков, состоит из следующих шагов:

  • Обобщение данных;
  • Группировка данных;
  • Исследование отношений между разными атрибутами;
  • Определение моделей и тенденций;
  • Построение моделей регрессионного анализа;
  • Построение моделей классификации.

Как правило, анализ данных требует обобщения заявлений касательно изучаемых данных.

Обобщение — процесс, при котором количество данных для интерпретации уменьшается без потери важной информации.

Кластерный анализ — метод анализа данных, используемый для поиска групп, объединенных общими атрибутами (также называется группировкой).

Еще один важный этап анализа — идентификация отношений, тенденций и аномалий в данных. Для поиска такой информации часто нужно использовать инструменты и проводить дополнительные этапы анализа, но уже на визуализациях.

Другие методы поиска данных, такие как деревья решений и ассоциативные правила, автоматически извлекают важные факты или правила из данных. Эти подходы используются параллельно с визуализацией для поиска взаимоотношений данных.

Предсказательная (предиктивная) модель

Предсказательная аналитика — это процесс в анализе данных, который нужен для создания или поиска подходящей статистической модели для предсказания вероятности результата.

После изучения данных у вас есть вся необходимая информация для развития математической модели, которая кодирует отношения между данными. Эти модели полезны для понимания изучаемой системы и используются в двух направлениях.

Первое — предсказания о значениях данных, которые создает система. В этом случае речь идет о регрессионных моделях.

Второе — классификация новых продуктов. Это уже модели классификации или модели кластерного анализа. На самом деле, можно разделить модели в соответствии с типом результатов, к которым те приводят:

  • Модели классификации: если полученный результат — качественная переменная.
  • Регрессионные модели: если полученный результат числовой.
  • Кластерные модели: если полученный результат описательный.

Простые методы генерации этих моделей включают такие техники:

  • линейная регрессия,
  • логистическая регрессия,
  • классификация,
  • дерево решений,
  • метод k-ближайших соседей.

Но таких методов много, и у каждого есть свои характеристики, которые делают их подходящими для определенных типов данных и анализа. Каждый из них приводит к появлению определенной модели, а их выбор соответствует природе модели продукта.

Некоторые из методов будут предоставлять значения, относящиеся к реальной системе и их структурам. Они смогут объяснить некоторые характеристики изучаемой системы простым способом. Другие будут делать хорошие предсказания, но их структура будет оставаться «черным ящиком» с ограниченной способностью объяснить характеристики системы.

Проверка модели

Проверка (валидация) модели, то есть фаза тестирования, — это важный этап. Он позволяет проверить модель, построенную на основе начальных данных. Он важен, потому что позволяет узнать достоверность данных, созданных моделью, сравнив их с реальной системой. Но в этот раз вы берете за основу начальные данные, которые использовались для анализа.

Как правило, при использовании данных для построения модели вы будете воспринимать их как тренировочный набор данных (датасет), а для проверки — как валидационный набор данных.

Таким образом сравнивая данные, созданные моделью и созданные системой, вы сможете оценивать ошибки. С помощью разных наборов данных оценивать пределы достоверности созданной модели. Правильно предсказанные значения могут быть достоверны только в определенном диапазоне или иметь разные уровни соответствия в зависимости от диапазона учитываемых значений.

Этот процесс позволяет не только в числовом виде оценивать эффективность модели, но также сравнивать ее с другими. Есть несколько подобных техник; самая известная — перекрестная проверка (кросс-валидация). Она основана на разделении учебного набора на разные части. Каждая из них, в свою очередь, будет использоваться в качестве валидационного набора. Все остальные — как тренировочного. Так вы получите модель, которая постепенно совершенствуется.

Развертывание (деплой)

Это финальный шаг процесса анализа, задача которого — предоставить результаты, то есть выводы анализа. В процессе развертывания бизнес-среды анализ является выгодой, которую получит клиент, заказавший анализ. В технической или научной средах результат выдает конструкционные решения или научные публикации.

Развертывание — это процесс использования на практике результатов анализа данных.

Есть несколько способов развертывания результатов анализа данных или майнинга данных. Обычно развертывание состоит из написания отчета для руководства или клиента. Этот документ концептуально описывает полученные результаты. Он должен быть направлен руководству, которое будет принимать решения. Затем оно использует выводы на практике.

В документации от аналитика должны быть подробно рассмотрены следующие темы:

  • Результаты анализа;
  • Развертывание решения;
  • Анализ рисков;
  • Измерения влияния на бизнес.

Когда результаты проекта включают генерацию предсказательных моделей, они могут быть использованы в качестве отдельных приложений или встроены в ПО.

Источник

Анализ информации. Критерии и методы.

Применяемые в ходе аналитических исследований методы анализа информации делятся на три группы:

1. общенаучные (качественные) методы;

2. количественные методы;

3. частнонаучные методы.

Основные методы анализа, относящиеся к первой группе, включают метод выдвижения гипотез, метод интуиции, метод наблюдения, метод сравнения, метод эксперимента.

Из количественных методов наиболее распространен метод статистических исследований.

К третьей группе относятся методы письменного и устного опроса, метод индивидуальной беседы и метод экспертной оценки. Метод выдвижения гипотез состоит в процедуре отделения известного от неизвестного и вычленения в неизвестном отдельных, наиболее важных элементов и фактов (событий).

Метод интуиции заключается в использовании аналитиком своей способности к непосредственному постижению истины (достижению требуемого результата) без предварительного логического рассуждения. Во многом этот метод основывается наличном опыте аналитика.

Метод наблюдения заключается в непосредственном исследовании (обследовании) конкретного объекта (источника информации, события, действия, факта), в самостоятельном описании аналитиком каких-либо фактов (событий, процессов), а также их логических связей в течение определенного времени.

Цель метода сравнения состоит в более глубоком изучении процессов (событий), происходящих на предприятии и имеющих отношение к вопросам защиты охраняемой информации. Сравниваются различные факторы, обусловливающие причины и обстоятельства, приводящие к утечке конфиденциальной информации или к возникновению предпосылок к ее утечке. При использовании метода сравнения в обязательном порядке соблюдаются следующие основные условия: сравниваемые объекты (действия, явления, события) должны быть сопоставимы по своим качественным особенностям; сравнение должно определить не только элементы сходства, но и элементы различия между исследуемыми объектами.

Метод эксперимента используется для проверки результатов деятельности по конкретному направлению защиты информации или для поиска новых решений, совершенствования системы ее защиты.

Роль количественных методов анализа заключается в информационном, статистическом обеспечении качественных методов. Наиболее характерен метод статистических исследований, который заключается в проведении количественного анализа отдельных сторон исследуемого явления (факта, события).

В ходе этого анализа накапливаются цифровые данные о состоянии и динамике нарушений режима конфиденциальности (секретности) в ходе проводимых работ, об эффективности решения службой безопасности (режимно-секретным подразделением) задач по их недопущению, о тенденциях развития ситуации в области информационной безопасности и т.д.

Методы письменного и устного опроса заключаются в получении путем анкетирования (или иным способом) необходимой информации от сотрудников предприятия, руководителей подразделений, а также лиц, допускающих нарушения установленного режима секретности (конфиденциальности информации). При этом в анкете указываются несколько возможных вариантов ответов на каждый поставленный вопрос.

Метод индивидуальной беседы отличает от метода письменного и устного опроса необходимость личного общения с сотрудником предприятия. Использование этого метода позволяет в динамично развивающейся беседе получить конкретную информацию в зависимости от целей аналитического исследования.

Метод экспертной оценки включает учет и анализ различных мнений по определенному кругу вопросов, излагаемых специалистами в той или иной области деятельности предприятия, связанной с конфиденциальной информацией.

Выбор конкретных методов анализа при проведении аналитических исследований в области защиты конфиденциальной информации зависит от целей и задач исследований, а также от специфики деятельности предприятия, состава и структуры службы безопасности и ее аналитического подразделения.

Критерии анализа информации

Информационная ценность контента (содержательной части) web-ресурса – важнейший фактор продвижения сайта в Интернете.

Есть народная пословица «Хороший товар продает себя сам»! Web-сайт – это прежде всего информационный продукт. Поэтому к планированию и формированию контента надо отнестись самым внимательным образом. В этом Вам поможет наша система критериев анализа информации.

Источник

Adblock
detector