Математический анализ это не так сложно как Вам кажется



Как понять математический анализ?

У меня непростые отношения с матанализом: с одной стороны он демонстрирует всю красоту и мощь математики, а с другой — агонию математического образования.

Математический анализ связывает различные темы в элегантной, но довольно сложной для ума манере. Ближайшая аналогия, которая приходит мне на ум, — Дарвиновская теория эволюции: стоит ее понять, и весь мир видится с позиции выживания. Вы понимаете, почему лекарства привели к резистентным микробам (выживает наиболее приспособленный). Вы понимаете, почему сахар и жир сладкие на вкус (вкус стимулирует потребление высококалорийных продуктов в условиях дефицита резервов организма). И все эти моменты складываются в единую, логическую картину.

Матанализ таким же образом проливает свет на всю систему математики. Не кажется ли вам, что все эти формулы как-то связаны?

Так и есть. Но большинство из нас изучают эти формулы независимо друг от друга. Математический анализ позволяет начать с «длина окружности = 2 * π * r» и вывести остальные формулы для вычисления площади круга, сферы и даже объема шара — древним грекам очень бы пригодился подобный подход.

К сожалению, матанализ олицетворяет собой все трудности в изучении математики. Большинство уроков объясняются на натянутых, неправдоподобных примерах, заумных доказательствах и банальном заучивании, которое напрочь убивает интуицию.

Так действительно не должно происходить.

Математика, искусство и идеи

Кое-что я понял еще со школы: математика — не самая сложная часть математики; самое тяжелое — мотивация к ее освоению. Особенно, умение не терять энтузиазм, несмотря на:

  • Преподавателей, больше сконцентрированных на штамповке публикаций и своей карьере, чем на преподавании
  • Небеспочвенные опасения, что математика — это сложно, скучно, непопулярно или «не ваш предмет»
  • Учебники и учебные планы, больше нацеленные на получение прибыли и хорошую статистику по тестированиям знаний, чем на пояснение сущности предмета.

«…если бы мне пришлось создавать механизм с единственной целью разрушить природное любопытство ребенка и его любовь к моделированию, вряд ли бы у меня получилось лучше, чем это уже реализовано — у меня бы просто не хватило фантазии, чтобы тягаться с такими бесчувственными, унылыми идеями, которые воплощены в современных методах изучения математики».

Представьте изучение изобразительного искусства так: Детки, никакого рисования в детском садике. Вместо этого, давайте-ка изучим химию лакокрасочных изделий, физику света и анатомию глаза. После 12 лет изучения этих аспектов, если дети (точнее уже подростки) всё еще не возненавидят искусство, они смогут начать рисовать самостоятельно. В конечном итоге, они теперь владеют полноценным фундаментом для того, чтобы начать уважать искусство. Верно?

Также и с поэзией. Представьте изучение этой цитаты (формулы):

«Но главное: будь верен сам себе; Тогда, как вслед за днем бывает ночь, Ты не изменишь и другим.» —Вильям Шекспир, Гамлет

Это элегантный способ сказать «будь собой» (и если это означает непочтительно писать о математике, пусть будет так). Но если бы мы рассматривали поэзию на уроке математики, вместо поиска смысла мы бы занялись подсчётом количества слогов, анализировали пятистопный ямб, разметкой существительных, глаголов и прилагательных.

Математика и поэзия — это как разные способы пояснить, охарактеризовать одно и то же. Формулы — это средства к достижению цели, способ выражения математической истины.

Мы забыли, что математика оперирует идеями, это не машинальное маниппулирование формулами, которые выражают эти идеи.

Ну это всё понятно, так в чем же твоя великая мысль?

Вот, что я не буду делать: я не буду пересказывать уже написанные учебники. Если вам нужны ответы здесь и сейчас, есть масса вебсайтов, видеоуроков и 20-минуток в помощь.

Вместо этого давайте освоим основные положения матанализа. Уравнений недостаточно — я хочу моментов озарения, чтобы вы действительно видели их смысл и понимали язык математики.

Формальный математический язык — это просто способ коммуникации. Графики, информативные анимированные модели и разговор простым языком могут дать больше знаний, чем целая страница заумных доказательств.

Но матанализ — это сложно!

Я думаю, что любой человек сможет понять основные положения матанализа. Нам не обязательно быть поэтами, чтобы наслаждаться произведениями Шекспира.

Вам будет гораздо проще, если вы знаете алгебру и интересуетесь математикой. Не так давно, чтение и письмо были работой специально обученных писцов. А сегодня это может сделать любой 10-летний ребенок. Почему?

Потому что мы этого ожидаем. Ожидания играют огромную роль в развитии возможностей. Так что ожидайте, что матанализ — это просто еще один предмет. Некоторые люди доходят до мельчайших подробностей (писатели/математики). Но остальные из нас могут просто восторгаться происходящим и попытаться его понять. Я бы хотел, чтобы каждый освоил основные понятия матанализа и сказал «Вот это да!».

Так о чем же матанализ?

Некоторые определяют матанализ как «область математики, которая изучает пределы, дифференцирование, интегрирование функций с одной или более переменных». Это определение верно, но оно совсем не полезно для новичков.

Вот мой ход: Матанализ делает с алгеброй то, что алгебра сделала с арифметикой.

  • Арифметика — это манипуляция числами (сложение, умножение и т.д.).
  • Алгебра находит связи между числами: a 2 + b 2 = c 2 — очень известная связь, описывающая соотношение сторон в прямоугольном треугольнике. Алгебра находит целые наборы чисел — если вы знаете a и b, вы можете вычислить и c.
  • Матанализ находит связи между уравнениями: вы можете видеть, как одно уравнение (длина окружности = 2 * π * r) связано с другим (площадь круга = π * r 2 ).

Используя матанализ, мы можем спросить самые разные вопросы:

  • Как уравнение растет и сокращается? Наращивается со временем?
  • Когда оно достигнет самой высокой/низкой точки?
  • Как мы используем переменные, которые постоянно меняются? (Тепло, движение, популяции, …).
  • И многое, многое другое!

Алгебра и матанализ решают задачи вместе: матанализ находит новые уравнения, а алгебра их решает. Как эволюция, матанализ расширяет ваше понимание того, как работает матушка-природа.

Пример, пожалуйста

Представим, что мы знаем уравнение длины окружности (2 * π * r), и нам нужно найти площадь. С чего начнем?

Представьте, что заполненный диск круга — это как набор матрешек.

Тут есть два способа нарисовать этот диск:

  • Нарисовать окружность и закрасить ее
  • Нарисовать набор колец толстым маркером

Количество «пространства» (площадь) должно быть одинаковым в обоих случаях, верно? И сколько пространства занимает кольцо?

Самое большое кольцо имеет радиус «r», и длина окружности кольца вычисляется как 2 * π * r. По мере того, как кольца уменьшаются, окружность также становится меньше, но всё равно сохраняется соотношение 2 * π * текущий радиус. Последнее кольцо больше похоже на булавочную головку, и длину окружности уже не вычислишь.

Читайте также:  Преимущества лабораторной диагностики в клинике Нарвская

А теперь начинается самое интересное. Давайте раскрутим эти кольца и выровняем их. Что произойдет?

  • У нас получится набор линий, который составит зубчатый треугольник. Но если взять более тонкие кольца, то треугольник становится уже менее зубчатым (об этом мы еще поговорим в других статьях).
  • С одной стороны будет самое маленькое кольцо (0), а с другой — самое большое (2* π * r)
  • Кольца имеют радиусы от 0 до «r». Для каждого возможного радиуса из этого диапазона (от 0 до r), мы просто помещаем раскрученное кольцо на свое место.
  • Общая площадь «кольцевого треугольника» = 1/2 основания * высоту = 1/2 * r *(2 * π * r) = π * r 2 , а это и есть формула поиска площади круга!

Ух ты! Общая площадь колец = площадь треугольника = площадь круга!

Это был простой пример, но вы уловили основную идею? Мы взяли диск, разделили его, и сложили части вместе немного другим путем. Матанализ показал, что диск и кольцо тесно связаны друг с другом: диск — это действительно набор колец. Это очень популярная тема в матанализе: Большие предметы состоят из более мелких предметов. И иногда именно с этими мелкими предметами работается проще и понятнее.

Немного о примерах

Множество примеров в матанализе основано на физике. Это, конечно, замечательно, но бывает сложно их воспринимать: честно, далеко не всегда удается держать в голове разные физические формулы вроде формулы скорости объекта.

Я предпочитаю начать с простых визуальных примеров, потому что именно так и работает наш мозг. Кольцо/круг, которое мы исследовали — вы бы могли смоделировать то же самое из нескольких отрезков трубок разного диаметра: разделить их, выровнять и уложить в грубый треугольник, чтобы убедиться, что математика действительно работает. С простой физической формулой такое вряд ли удастся провернуть.

Немного о математической строгости (для фанатиков этой науки)

Я чувствую, как математики-педанты жгут свои клавиатуры. Поэтому я вставлю всего несколько слов о «строгости». Знаете ли вы, что мы не учим матанализ способами, которыми его открыл Ньютон или Лейбниц? Они использовали интуитивные идеи «флюксии» и «бесконечно малых величин», которые были заменены пределами, потому что «Конечно, это работает на практике. Но работает ли это в теории?».

Мы создали сложные механические модели, чтобы «точно» доказать матанализ, но мы утратили интуитивное восприятие предмета в процессе таких доказательств.

Мы смотрим на сладость сахара с точки зрения химии мозга, вместо того, чтобы пояснять это языком науки «В сахаре много энергии. Ешьте его».

Я не хочу (и не могу) преподавать матанализ студентам или обучать ученых. Но будет ли плохо, если каждый сможет понимать матанализ на том «неточном» уровне, на котором его понимал Ньютон? Чтобы это также изменило мир для вас, как когда-то изменило для него?

Преждевременная концентрация на точности рассредоточивает учеников и делает математику сложной для изучения. Вот хороший пример: число е технически определено пределом, но открыто оно было именно с помощью интуитивной догадки о росте. Натуральный логарифм может выглядеть как интеграл, или время, которому нужно расти. Какие объяснения лучше помогут новичкам?

Давайте немного порисуем от руки, а в химию погрузимся уже по ходу дела. Приятных вычислений.

Источник

Как выучить математический анализ с нуля?

Прежде чем составить план работы, надо уточнить, куда вы идете и откуда.

Куда.

Вот три основных направления: матанализ как инструмент (и тогда достаточно строить и анализировать графики функций, брать производные и интегралы); матанализ как часть математики (и тогда нужно углубиться в основания); матанализ как часть культуры (и тут хватит хорошей книжки с картинками, чтобы получить общее представление).

Откуда.

Очень странно, что с нуля.

(Обычно математику желают изучать с нуля те люди, которые учили-учили, но так и не выучили. Разобраться «что я знаю, а что нет» они не могут, потому что вконец запутались, и думают, что проще начать с нуля. Это самообман. Не проще. Устройте себе самодиагностику и разберитесь, какие темы действительно уже понимаете. Это часть умения учиться, без этого все равно не обойтись и в дальнейшем.)

В школе сейчас изучают основы анализа, обязательно геометрический смысл производной. На ЕГЭ требуется умение по графику производной определить свойства функции и наоборот. У вас действительно ноль знаний по программе средней школы? Лучше бы ее осилить, и притом на профильном уровне, прежде чем переходить к высшей математике. По дороге вы не только освоите азы анализа, но разовьете умение учиться, без этого подходить к анализу несколько опрометчиво.

Если обучаться в вузе — не ваш вариант, а с направлением обучения вы не определились, возьмите на степике вводный курс анализа. В любом случае пригодится, а потом будет яснее, чего вы хотите. Вы будете уточнять маршрут по мере продвижения, и это нормально. Самообразованием так и надо заниматься.

(Буду теперь рассказывать коллегам, что объясняла Фихтенгольцу, как учить матанализ.)

Источник

Как делать мат анализ

Уже 3й месяц изучаю мат анализ в ВУЗе, но успехи, увы, не большие.
Возможно проблема в том, что я не знаю где это примерить на практике и просто не могу понять самой сути, а просто зубрить — плохой вариант.
Например Архитектура ЭВМ нормально дается, а мат анализ — нет.

Подскажите норм ресурсы, чтобы можно было "познать в сравнении" или "понять на доходчивом примере"
Если что, есть люди которым можно задать конкретные вопросы по поводу мат анализа

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Подскажите,пожалуйста, какой-нибудь хороший курс по мат. анализу! Хочу понять мат.анализ!
Очень хочется найти какой-нибудь хороший онлайн-курс по мат.анализу, на котором бы преподаватель.

Мат анализ
Помогите решить задания, пожалуйста Правила, 5.18 Напечатайте задания здесь. И редактор формул.

Мат.анализ
Пожалуйста помогите решить задачи

Задачи на мат.анализ
Помогите решить пожалуйста.

= R/20 — L*k, где k коэфициент равен 0.03. Задча найти то M при котором R будет максимальным. Все — решаете.

Математический анализ, математика+анализ, т.е. вы проводите анализ чего либо применяя математический аппарат наработаный людьми за столетия развития мира.

Главное на парах не запоминать на память сам процесс анализа, а понять сами основы анализа, механизмы анализа. Т.е. школьник знает теорему Пифагора как основу уже может провести математический анализ опираясь на теорему проектируя, скажем, план своего дома.

Есть в сети отсакинированные тома математической энциклопедии, Вся высшая математика, вот загрузите себе на компьютер и работайте с информацией.

Читайте также:  Вертикальный и горизонтальный анализ бухгалтерского баланса

Математический анализ применялся при единоразовом проектировании программного каркаса ПО схемотехнического моделирования — Multisim, OrCad и т.п. Матаном в сочетании с теорией вероятности пользуются в социологии, в астрономии возможно.

Выразил свое мнение.

Лучший ответСообщение было отмечено как решение

Решение

Читайте учебники: Ильин-Поздняк там или ещё что. Чем больше, тем лучше. В пришпиленной теме много всего. Энциклопедиями не злоупотребляйте: справочники — для справок.

Математический анализ не есть математика + анализ. Это историческое название части математики, работающая с "анализом бесконечно малых". В широком смысле к матанализу относится всё, имеющее отношение к дифференцированию и интегрированию функций — сюда попадает и теория пределов вместе с общей топологией, и дифуры (обыкновенные и УЧПы), и функциональный анализ — короче, много всего.

Матанализ появился как инструмент описания процессов. Не просто "во сколько выигрываем в силе, во столько проигрываем в расстоянии", а описать само разворачивание процесса во времени. Причём "процесс" можно понимать очень широко: например, можно говорить об определении формы нагруженной мембраны — здесь вроде во времени ничего не меняется, но можно говорить об изменении изгиба при переходе от одних точек к другим, соседним.

Ну и матанализ вполне успешно описывает процессы. В частности, законы природы обычно формулируются в виде дифференциальных уравнений. И разные математические модели также часто основываются на дифурах.

Источник

Математический анализ – это не так сложно, как Вам кажется

Сидите в темноте и читаете мои статьи? Поберегите зрение. Если у Вас есть любимое место, скорей всего это кровать, то настенные бра с доставкой по Украине на сайте могут быть подходящим вариантом. Читайте при свете, и берегите зрение.

Всё должно быть изложено так просто, как только возможно, но не проще.
Альберт Эйнштейн

Наше путешествие начнётся со знакомства с вымышленным персонажем, которого мы назовём Джоном Доу. Он является среднестатистическим работником, которого можно легко найти в любом городе мира. Практически каждый день Джон просыпается под громкие звуки будильника и едет на работу на своей машине. Он поднимается на лифте в свой кабинет, где загружает компьютер и вводит логин и пароль. Джон делает все эти вещи без малейшего понятия о том, как они работают.

Возможно, ему было бы интересно узнать о там, как устроены и функционируют устройства и приборы, которыми он пользуется ежедневно, тем не менее, у него нет ни времени, ни сил, чтобы заниматься этим. Он считает автомобили, лифты, компьютеры и будильники совершенно разными и сложными механизмами, которые не имеют между собой ничего общего. По мнению Джона, на то, чтобы понять, как работает каждый из них, нужны годы изучений.

Некоторые люди смотрят на вещи несколько иначе, чем наш Джон Доу. Они знают, что электродвигатели в лифтовых установках очень похожи на автомобильные генераторы переменного тока.

Они знают, что программируемый логический контроллер, управляющий электрическим двигателем, который отвечает за перемещение лифта, очень похож на рабочий компьютер Джона Доу. Они знают, что на фундаментальном уровне принцип работы программируемого логического контроллера, будильника и компьютера основывается на относительно простой транзисторной теории. То, что Джон Доу и среднестатистический человек считают невероятно сложным, для хакера является самым обычным использованием простых механических и электрических принципов. Проблема заключается в том, как эти принципы применяются. Абстрагирование фундаментальных принципов от сложных идей позволяет нам понять и упростить их способом, который воздаёт должное импровизированному совету Альберта Эйнштейна, процитированному выше.

Многие из нас рассматривают математический анализ как нечто сложное. (Таким же Джон Доу считает принцип устройства и функционирования различных механизмов.) Вы видите нагромождение сложных, запутанных вещей. Для того чтобы понять их, Вам нужно немало времени и усилий. Но что, если мы скажем Вам, что математический анализ (исчисление) не такой уж и сложный, каковым кажется на первый взгляд, равно как и большинство механизмов? Что есть несколько основных принципов, которые каждому дано понять, и как только Вы это сделаете, Вам откроется новый взгляд на мир и то, как он устроен?

В обычном учебнике по математическому анализу содержится около одной тысячи страниц. Типичный Джон Доу увидит в нём тысячу трудных для понимания и изучения вещей, а хакер – два основных принципа (производная и интеграл) и 998 примеров этих принципов. Мы вместе попытаемся разобраться, что это за принципы. Основываясь на работе, проделанной Майклом Старбёрдом, профессором Техасского университета в Остине, мы будем использовать повседневные примеры, которые каждый сможет понять. Математический анализ раскрывает особую красоту нашего мира – красоту, которая возникает тогда, когда Вы способны наблюдать её динамически, а не статически. Мы надеемся, что у Вас всё получится.

Перед тем как мы начнём, хотелось бы кратко пройтись по истории возникновения математического анализа, корни которого лежат в очень тщательном разборе изменений и движения.

Парадокс Зенона

Зенон Элейский – философ, живший в IV веке до нашей эры. Он выдвинул несколько тонких, но глубоких парадоксов, два из которых, в конечном итоге, привели к зарождению математического анализа. Для того чтобы решить парадоксы Зенона, человечеству понадобилось более двух тысяч лет. Как Вы понимаете, это было нелегко. Трудности в значительной степени были связаны с идеей бесконечности. Что представляет собой проблема бесконечности с математической точки зрения? В XVII веке Исааку Ньютону и Готфриду Лейбницу удалось решить парадоксы Зенона и создать математический анализ. Давайте внимательно рассмотрим эти парадоксы, чтобы понять, почему вокруг них было столько шумихи.

Представьте летящую в воздухе стрелу. Мы можем с большой уверенностью сказать, что стрела находится в движении. А теперь рассмотрим стрелу в определённый момент времени. Она больше не движется, а пребывает в состоянии покоя. Но мы точно знаем, что стрела находится в движении, тогда каким образом она может пребывать в состоянии покоя?! В этом и заключается суть данного парадокса. Он может показаться глупым, однако в действительности это очень сложная концепция, которую следует рассматривать с математической точки зрения.

Позднее мы выясним, что имеем дело с понятием мгновенной скорости изменения, которое мы свяжем с идеей одного из двух принципов математического анализа (исчисления) – производной. Это позволит нам вычислить скорость движения стрелы в определённый момент времени – то, что человечеству не удавалось сделать более двух тысячелетий.

Давайте снова рассмотрим эту же стрелу. На этот раз представим, что она летит в нашу сторону. Зенон утверждал, что мы не должны двигаться, поскольку стрела никогда не сможет попасть в нас. Представьте, что после того как стрела оказалась в воздухе, ей необходимо преодолеть половину расстояния между луком и мишенью. Как только она достигнет определённой точки на полпути, ей снова будет нужно преодолеть половину расстояния – на этот раз между данной точкой и целью. Представьте себе, что мы будем продолжать так делать. Стрела, таким образом, постоянно преодолевает половину расстояния между началом отсчёта и мишенью. Учитывая это, можно сделать вывод, что стрела никогда не сможет попасть по нам! В реальной жизни стрела, в конечном счёте, достигнет цели, заставив нас гадать над смыслом парадокса.

Читайте также:  Шаг 2 Изучение социальной ситуации

Как и в случае с первым парадоксом, мы позднее рассмотрим, как решить данную проблему при помощи одного из принципов математического анализа – интеграла. Интеграл позволяет нам рассматривать концепцию бесконечности как математическую функцию. Он является чрезвычайно мощным инструментом, по мнению учёных и инженеров.

Два основных принципа математического анализа

Суть двух фундаментальных принципов математического анализа можно продемонстрировать, применив их для решения парадоксов Зенона.

Производная. Производная – это метод, который позволит нам рассчитать скорость полёта стрелы в парадоксе «Стрела». Мы сделаем это, проанализировав положение стрелы через последовательно уменьшающиеся промежутки времени. Точная скорость стрелы станет известна, когда время между измерениями окажется бесконечно малым.

Интеграл. Интеграл – это метод, который позволит нам вычислить положение стрелы в парадоксе «Дихотомия». Мы сделаем это, проанализировав скорость движения стрелы через последовательно уменьшающиеся промежутки времени. Точное положение стрелы станет нам известно, когда время между измерениями окажется бесконечно малым.

Между производной и интегралом нетрудно заметить некоторое сходство. Обе величины рассчитываются в ходе анализа положения или скорости стрелы через постепенно уменьшающиеся временные интервалы. Позже мы выясним, что интеграл и производная, по сути, являются двумя сторонами одного керамического конденсатора.

Почему мы должны изучать основы математического анализа?

Всем нам известен Закон Ома, который связывает силу тока, напряжение и сопротивление в одно простое уравнение. Сейчас давайте рассмотрим «Закон Ома» на примере конденсатора. Сила тока конденсатора зависит от напряжения и времени. Время в данном случае является критической переменной и должно учитываться в любом динамическом событии. Математический анализ позволяет нам понять и оценить то, как вещи меняются с течением времени. В случае с конденсатором, сила тока равна ёмкости, помноженной на вольты в секунду, или i = C(dv/dt), где:

i – сила тока (мгновенная);
C – ёмкость, которая измеряется в фарадах;
dv – изменение напряжения;
dt – изменение времени.

В данной цепи в конденсаторе нет электрического тока. Вольтметр будет показывать напряжение аккумулятора, а амперметр – ничего. Напряжение не станет меняться до тех пор, пока потенциометр будет оставаться нетронутым. В таком случае i = C(0/dt) = 0 апмер. Но что произойдёт, если мы начнём настраивать потенциометр? Судя по уравнению, в конденсаторе появится результирующая сила тока. Эта сила тока будет зависеть от изменения напряжения, которое связано с тем, насколько быстро двигается потенциометр.

Источник

Матан для чайников: видео, задачи, экзамены и многое другое

Матан — такое страшное слово для студентов первого, второго, и если очень «повезет», и третьего курса. Если технари говорят «сдал сопромат — можешь жениться», то математики заменяют его на «сдал матан — можешь жениться» (а не сдал, кхм, пополнишь ряды вооруженных сил. ). Так что стимул сдать экзамен по матанализу (а перед этим еще наверняка кучу контрольных) налицо. Чем тут можно помочь? Перед вами небольшой путеводитель «для чайников» в мире изучения матана, со ссылками на полезные учебники, видеоролики и т.п.

Ступень первая
Учим мат.часть: учебники, примеры, решебники по матанализу

Начать, пожалуй, следует с основного — с учебников. Много ссылок на полезные учебники по матанализу вы найдете тут: Учебники по мат.анализу.

Но не все учебники одинаково полезны и легко читаемы. Если нужны самые основы высшей математики (производные, пределы. интегралы, ряды, диффуры), очень советую сайт-учебник с подробными пояснениями и примерами Высшая математика для заочников.

Нужно еще больше готовых примеров, чтобы разобраться что к чему? Без проблем, посмотрите у нас на сайте Примеры решений по матану, а также на сайте Math 24 (более 2000 примеров по разделам математического анализа с теорией).

Ну и наконец, такое сладкое слово решебник. Решебников по матану в полном смысле этого слова не так много, но есть учебники с огромным количеством разобранных задач, а также сайты с решениями задач из сборников. Все ссылки вы найдете тут Решебники по вышмату, руководства к решению задач.

Ступень вторая
Вперед по экспоненте: видео и онлайн решатели задач по матану

матан для чайников полезные ссылки

Продвигаемся дальше, благо в наш век новых технологий можно не просто читать нудные учебники, а смотреть куда менее нудные видео-лекции, которые помогут разобраться в сложных темах (особенно если лекции обычные вы прогуляли;)). Полезные видео по матану

    от Российской экономической школы (РЭШ), лектор Катышев П.К. от канала Синергия ТВ (в виде слайдшоу, не живой лектор). видео с примерами решений типовых задач по матану (пределы, ряды, интегрирование и т.п.).

Ну и помощь другого рода — всяческие онлайн-решатели задач по математике, от тех, что просто выдадут ответ, до тех, что покажут и решение (платно или бесплатно). Подробный список есть тут: Онлайн решение задач по матану. Пользоваться такими сервисами надо с умом: если понимаете в предмете, помощь будет на руку — проверить ответ, сверить решение, найти идею замены и т.п.

Ступень третья
Когда уже поздно начинать: помощь на экзамене или решение контрольной

матан онлайн - как сдать экзамен?Если же контрольная или типовой расчет по матану на носу, а вы не можете отличить первый замечательный предел от второго, а формула интегрирования по частям повергает в ужас, можете заказать решение своей работы у нас (см. также решение математики для заочников). Решение подробно оформим в Word (не надо разбирать неясный почерк), с комментариями, формулами, чертежами, всего от 60 рублей за задание (примеры контрольных смотрите тут). И все это с уважением, ответственностью и гарантиями — лучшего предложения вам не найти!

Мучает вопрос, как сдать матан? На носу экзамен или зачет? Поможем и онлайн — в нужное время будем на связи (через ВКонтакте, почту, WhatsApp и т.п.), решим задачи и вышлем оперативно. Не проваливайте сессию, обращайтесь в МатБюро (подробнее об онлайн-помощи по математическому анализу).

Источник

Adblock
detector