Корреляционно регрессивный анализ производительности труда



Реферат: Корреляционно-регрессионный анализ взаимосвязи производственных показателей предприятия организ

Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Принятие управленческих решений на всех уровнях – от общегосударственного или регионального и до уровня отдельной корпорации или частной фирмы – невозможно без должного статистического обеспечения.

Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы.

Статистика – это наука, изучающая количественную сторону массовых явлений и процессов в неразрывной связи с их качественной стороной, количественное выражение закономерностей общественного развития в конкретных условиях места и времени.

Для получения статистической информации органы государственной и ведомственной статистики, а также коммерческие структуры проводят различного рода статистические исследования. Процесс статистического исследования включает три основные стадии: сбор данных, их сводка и группировка, анализ и расчет обобщающих показателей.

От того, как собран первичный статистический материал, как он обработан и сгруппирован, в значительной степени зависят результаты и качество всей последующей работы. Недостаточная проработка программно-методологических и организационных аспектов статистического наблюдения, отсутствие логического и арифметического контроля собранных данных, несоблюдение принципов формирования групп в конечном счете могут привести к абсолютно ошибочным выводам.

Не менее сложной, трудоемкой и ответственной является и заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязи между изучаемыми явлениями и процессами.

Используемые на всех стадиях исследования приемы и методы сбора, обработки и анализа данных являются предметом изучения общей теории статистики , которая является базовой отраслью статистической науки. Разработанная ею методология применяется в макроэкономической статистике, отраслевых статистиках (промышленности, сельского хозяйства, торговли и прочих), статистике населения, социальной статистике и в других статистических отраслях.

I. Теоретическая часть

1. Основные производственные показатели

предприятия (организации)

Статистика промышленности – одна из отраслей экономической статистики. Она изучает промышленность, происходящие в ней явления, процессы, закономерности и взаимосвязи.

На основе статистического изучения производственно-хозяйственной деятельности промышленных предприятий вырабатываются стратегия и тактика развития предприятия, обосновываются производственная программа и управленческие решения, осуществляется контроль за их выполнением, выявляются резервы повышения эффективности производства, оцениваются результаты деятельности предприятий, его подразделений и работников.

В статистике промышленности применяют методологию системного статистического анализа основных экономических показателей результатов деятельности предприятия, характерных для рыночной экономики. Проводят анализ основных статистических показателей по различным направлениям производственно-хозяйственной деятельности предприятия: производство продукции, трудовые ресурсы и уровень их использования, основные фонды и производственное оборудование, оборотные средства и предметы труда, научно-технический прогресс, себестоимость промышленной продукции .

Продукция промышленности – прямой полезный результат промышленно-производственной деятельности предприятий, выраженный либо в форме продуктов, либо в форме производственных услуг (работ промышленного характера).

Для характеристики результатов деятельности отдельных предприятий, объединений, отраслей промышленности и всей промышленности в целом используется система стоимостных показателей продукции, включающая в себя валовой и внутризаводской обороты, товарную и реализованную продукцию.

Использование трудовых ресурсов в промышленности – одна из основных проблем, значение которой будет возрастать в связи с напряженным трудовым балансом. Вместе с тем, контроль за уровнем использования трудовых ресурсов – одна из важнейших задач статистического анализа результатов деятельности промышленных предприятий.

Производительность труда – качественная его характеристика, показывающая способность работников к производству материальных благ в единицу времени.

Уровень производительности труда характеризуется количеством продукции, создаваемой в единицу времени (выработка – прямой показатель), или затратами времени на производство единицы продукции (трудоемкость – обратный показатель). Прямые и обратные показатели используются для характеристики уровня производительности труда.

4. Статистика заработной платы

Заработная плата представляет собой часть общественного продукта, поступающего в индивидуальное распоряжение работников в соответствии с количеством затраченного ими труда. Статистика промышленности рассматривает номинальную заработную плату, выраженную суммой денег, начисленной работнику, без учета их покупательной способности.

Основные фонды представляют собой средства труда, которые целиком и в неизменной натуральной форме функционируют в производстве в течение длительного времени, постепенно перенося свою стоимость на произведенный продукт.

В статистике промышленности различают следующие характеристики стоимости основных фондов: полная первоначальная стоимость; первоначальная стоимость за вычетом износа (остаточная первоначальная стоимость); полная восстановительная стоимость; восстановительная стоимость за вычетом износа (остаточная восстановительная стоимость).

Оборотные средства – это выраженные в денежной форме оборотные фонды и фонды обращения, авансируемые в плановом порядке для обеспечения непрерывности производства и реализации продукции.

По своему происхождению предметы труда подразделяются на сырье и материалы. Сырьем называют продукты сельского хозяйства и добывающей промышленности; материалы – продукты обрабатывающей промышленности.

Основными направлениями научно-технического прогресса являются: электрификация, механизация, автоматизация и химизация производства; освоение и внедрение новых видов машин, аппаратов, приборов и новых технологических процессов; внедрение изобретений и рационализаторских предложений: углубление специализации и кооперирования.

Под себестоимостью продукции понимают сумму выраженных в денежной форме затрат, связанных с выпуском определённого объема и состава продукции. Себестоимость – обобщающий качественный показатель работы предприятия. Ее уровень служит основой для определения цен на отдельные виды продукции.

2. Основные понятия корреляции и регрессии

Исследуя природу, общество, экономику, необходимо считаться со взаимосвязью наблюдаемых процессов и явлений. При этом полнота описания, так или иначе, определяется количественными характеристиками причинно-следственных связей между ними. Оценка наиболее существенных из них, а также воздействия одних факторов на другие является одной из основных задач статистики.

Формы проявления взаимосвязей весьма разнообразны. В качестве двух самых общих их видов выделяют функциональную (полную) и корреляционную (неполную) связи. В первом случае величине факторного признака строго соответствует одно или несколько значений функции. Достаточно часто функциональная связь проявляется в физике, химии. В экономике примером может служить прямо пропорциональная зависимость между производительностью труда и увеличением производства продукции.

Корреляционная связь (которую также называют неполной, или статистической) проявляется в среднем, для массовых наблюдений, когда заданным значениям зависимой переменной соответствует некоторый ряд вероятных значений независимой переменной. Объяснение тому – сложность взаимосвязей между анализируемыми факторами, на взаимодействие которых влияют неучтенные случайные величины. Поэтому связь между признаками проявляется лишь в среднем, в массе случаев. При корреляционной связи каждому значению аргумента соответствуют случайно распределенные в некотором интервале значения функции.

Например, некоторое увеличение аргумента повлечет за собой лишь среднее увеличение или уменьшение (в зависимости от направленности) функции, тогда как конкретные значения у отдельных единиц наблюдения будут отличаться от среднего. Такие зависимости встречаются повсеместно. Например, в сельском хозяйстве это может быть связь между урожайностью и количеством внесенных удобрений. Очевидно, что последние участвуют в формировании урожая. Но для каждого конкретного поля, участка одно и то же количество внесенных удобрений вызовет разный прирост урожайности, так как во взаимодействии находится еще целый ряд факторов (погода, состояние почвы и др.), которые и формируют конечный результат. Однако в среднем такая связь наблюдается – увеличение массы внесенных удобрений ведет к росту урожайности.

По направлению связи бывают прямыми, когда зависимая переменная растет с увеличением факторного признака, и обратными, при которых рост последнего сопровождается уменьшением функции. Такие связи также можно назвать соответственно положительными и отрицательными.

Относительно своей аналитической формы связи бывают линейными и нелинейными. В первом случае между признаками в среднем проявляются линейные соотношения. Нелинейная взаимосвязь выражается нелинейной функцией, а переменные связаны между собой в среднем нелинейно.

Существует еще одна достаточно важная характеристика связей с точки зрения взаимодействующих факторов. Если характеризуется связь двух признаков, то ее принято называть парной. Если изучаются более чем две переменные – множественной.

Указанные выше классификационные признаки наиболее часто встречаются в статистическом анализе. Но, кроме перечисленных различают также непосредственные, косвенные и ложные связи. Собственно, суть каждой из них очевидна из названия. В первом случае факторы взаимодействуют между собой непосредственно. Для косвенной связи характерно участие какой-то третьей переменной, которая опосредует связь между изучаемыми признаками. Ложная связь – это связь, установленная формально и, как правило, подтвержденная только количественными оценками. Она не имеет под собой качественной основы или же бессмысленна.

Читайте также:  Медицинский центр Личный доктор в Невском районе СПб и Колпино

По силе различаются слабые и сильные связи. Эта формальная характеристика выражается конкретными величинами и интерпретируется в соответствии с общепринятыми критериями силы связи для конкретных показателей.

В наиболее общем виде задача статистики в области изучения взаимосвязей состоит в количественной оценке их наличия и направления, а также характеристике силы и формы влияния одних факторов на другие. Для ее решения применяются две группы методов, одна из которых включает в себя методы корреляционного анализа, а другая – регрессионный анализ. В то же время ряд исследователей объединяет эти методы в корреляционно-регрессионный анализ, что имеет под собой некоторые основания: наличие целого ряда общих вычислительных процедур, взаимодополнения при интерпретации результатов и др.

Поэтому в данном контексте можно говорить о корреляционном анализе в широком смысле – когда всесторонне характеризуется взаимосвязь. В то же время выделяют корреляционный анализ в узком смысле – когда исследуется сила связи – и регрессионный анализ, в ходе которого оцениваются ее форма и воздействие одних факторов на другие.

Задачи собственно корреляционного анализа сводятся к измерению тесноты связи между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак.

Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной.

Решение названных задач опирается на соответствующие приемы, алгоритмы, показатели, применение которых дает основание говорить о статистическом изучении взаимосвязей.

3. Корреляционно-регрессионный анализ

Для выявления наличия связи, ее характера и направления в статистике используют методы: приведения параллельных данных; аналитических группировок; графический, корреляции.

Корреляционно-регрессионный анализ включает в себя измерение тесноты, направления связи и установление аналитического выражения (формы) связи (регрессионный анализ).

Одним из методов корреляционно-регрессионного анализа является метод парной корреляции, рассматривающий влияние вариации факторного признака x на результативный y . Аналитическая связь между ними описывается уравнениями:

Оценка параметров уравнения регрессии осуществляется методом наименьших квадратов, в основе которого лежит требование минимальности сумм квадратов отклонений эмпирических данных yi от выровненных (теоретических) yxi

Система нормальных уравнений для нахождения параметров линейной парной регрессии имеет вид:

Для оценки типичности параметров уравнения регрессии используется t -критерий Стьюдента. При этом вычисляются фактические значения t -критерия для параметров. Полученные фактические значения сравниваются с критическим, которые получают по таблице Стьюдента с учетом принятого уровня значимости и числа степеней свободы.

Полученные при анализе корреляционной связи параметры уравнения регрессии признаются типичными, если t фактическое больше t критического.

По приведенным на типичность параметрам уравнения регрессии производится синтезирование (построение) математической модели связи. При этом параметры примененной в анализе математической функции получают соответствующие количественные значения: один параметр показывает усредненное влияние на результативный признак неучтенных (не выделенных для исследования) факторов, а другой параметр – на сколько изменяется в среднем значение результативного признака при изменении факторного на единицу его собственного измерения.

Проверка практической значимости синтезированных в корреляционно-регрессионном анализе математических моделей осуществляется посредством показателей тесноты связи между признаками x и y .

Для статистической оценки тесноты связи применяются следующие показатели вариации:

1. общая дисперсия результативного признака, отображающая общее влияние всех факторов;

2. факторная дисперсия результативного признака, отображающая вариацию y только от воздействия изучаемого фактора, которая характеризует отклонение выровненных значений yx от их общей средней величины y ;

3. остаточная дисперсия, отображающая вариацию результативного признака y от всех прочих, кроме x факторов, которая характеризует отклонение эмпирических (фактических) значений результативного признака yi от их выровненных значений yxi .

Соотношение между факторной и общей дисперсиями характеризует меру тесноты связи между признаками x и y

Этот показатель называется индексом детерминации (причинности). Он выражает долю факторной дисперсии, т.е. характеризует, какая часть общей вариации результативного признака y объясняется изменением факторного признака x . На основе предыдущей формулы определяется индекс корреляции R :

Используя правило сложения дисперсий, можно вычислить индекс корреляции.

При прямолинейной форме связи показатель тесноты связи определяется по формуле линейного коэффициента корреляции r:

Для оценки значимости коэффициента корреляции r применяется t -критерий Стьюдента с учетом заданного уровня значимости и числа степеней свободы k.

Если , то величина коэффициента корреляции признается существенной.

Для оценки значимости индекса корреляции R применяется F -критерий Фишера. Фактическое значение критерия FR определяется по формуле:

где m – число параметров уравнения регрессии.

Величина FR сравнивается с критическим значением FK , которое определяется по таблице F – критерия с учетом принятого уровня значимости и числа степеней свободы k 1 = m -1 и k 2 = n m .

Если FR > FK , то величина индекса корреляции признается существенной.

По степени тесноты связи различают количественные критерии оценки тесноты связи.

Источник

Применение корреляционно-регрессионного анализа

В системе статистической обработки данных и аналитики часто используется сочетание методик корреляции и регрессии. Создателем корреляционно-регрессионного анализа считается Фрэнсис Гальтон, который разработал теоретическую основу методологии в 1795 году. В конце 19 века многие европейские ученые в области теории статистики углубили познания в вопросе использования количественных измерителей для отражения связей между явлениями.

Что такое корреляционно-регрессионный анализ (КРА) предприятия?

Корреляционно-регрессионный анализ (КРА) на предприятиях используется для выявления связей между несколькими факторами хозяйственной деятельности и оценки степени взаимозависимости выбранных для анализа критериев. Методика использует два алгоритма действий:

  1. Корреляция, которая направлена на построение моделей связей.
  2. Регрессия, используемая для прогнозирования событий на основе наиболее подходящей для ситуации модели связей.

Анализ проводится в несколько шагов:

  • постановка задач проведения исследования;
  • массовый сбор информации: систематизация статистических данных по конкретным показателям деятельности предприятия в динамике за несколько периодов;
  • этап создания модели связей;
  • анализ функционирования модели, оценка ее эффективности.

Для проведения КРА необходимо использовать показатели в едином измерителе, все они должны иметь числовое значение.

ОБРАТИТЕ ВНИМАНИЕ! Для достоверности данных и работоспособности модели сведения должны быть собраны за длительный отрезок времени.

Для полноты анализа надо устранить количественные ограничения на показатели модели, должно соблюдаться условие постоянной временной и территориальной структуры рассматриваемой совокупности элементов.

Где используется корреляционно-регрессионный анализ?

ВАЖНО! Пример проведения корреляционно-регрессионного анализа от КонсультантПлюс доступен по ссылке

Основные ситуации применения КРА:

  1. Тестирование отношения между несколькими величинами: выявляется, что именно этот показатель является влияющим, а второй – зависимым.
  2. Определение связи между двумя переменными факторами без уточнения причинно-следственного блока сведений.
  3. Расчет показателя по изменению значения другого фактора.

Корреляционно-регрессионная методика анализа может применяться для подготовки данных о разных сторонах деятельности компании. В бизнесе построение моделей зависимости одного показателя от других факторов и дальнейшая эксплуатация выведенной математической формулы позволяют отслеживать оперативное изменение текущей ситуации в выбранном сегменте хозяйствования и быстро принимать управленческие решения.

Например, благодаря КРА можно постоянно отслеживать уровень рыночной стоимости предприятия. Для этого на начальных этапах проводится сбор информации о динамике изменения рыночной стоимости и статистических показателей всех возможных факторов влияния:

  • уровень выручки;
  • рентабельность;
  • размер активов;
  • сумма непогашенной дебиторской или кредиторской задолженности;
  • резерв сомнительных долгов и др.

Для каждого критерия строится модель, которая выявляет, насколько сильно фактор может влиять на рыночную стоимость бизнес-проекта. Когда все модели построены, оценивается их работоспособность и адекватность. Из комплекса данных выбирается тот тип взаимосвязей, который отвечает требованиям объективности и достоверности. На основе полученной схемы связей создается уравнение, которое позволит получать прогнозные данные об изменении рыночной стоимости при условии изменения значения конкретного фактора.

Методику можно применять при формировании ценовой политики, составлении бизнес-планов, проработке вопроса о расширении ассортиментного ряда и в других сегментах предпринимательства.

Задачи, виды и показатели корреляционно-регрессионного анализа

Задачи КРА заключаются в:

  • идентификации наиболее значимых факторов влияния на конкретный показатель деятельности предприятия;
  • количественном измерении тесноты выявленных связей между показателями;
  • определении неизвестных причин возникновения связей;
  • всесторонней оценке факторов, которые признаны наиболее важными для рассматриваемого показателя;
  • выведении формулы уравнения регрессии;
  • составлении прогноза возможного результата деятельности при изменении ключевых связанных факторов с учетом возможного влияния других факторных признаков.

КРА подразумевает использование нескольких видов корреляционных и регрессионных методов. Зависимости выявляются при помощи корреляций таких типов:

  • парная, если связь устанавливается с участием двух признаков;
  • частная – взаимосвязь оценивается между искомым показателем и одним из ключевых факторов, при этом условием задается постоянное значение комплекса других факторов (то есть числовое выражение всех остальных факторов в любых ситуациях будет приниматься за определенную неизменную величину);
  • множественная – основу исследования составляет влияние на показатель деятельности не одного фактора, а сразу нескольких критериев (двух и более).
Читайте также:  Z сч т или индекс модель Альтмана для непроизводственных компаний

СПРАВОЧНО! Выявленные показатели степени тесноты связей отражаются коэффициентом корреляции.

На выбор коэффициента влияет шкала измерения признаков:

  1. Шкала номинальная, которая предназначена для приведения описательных характеристик объектов.
  2. Шкала ординальная нужна для вычисления степени упорядоченности объектов в привязке к одному и более признакам.
  3. Шкала количественная используется для отражения количественных значений показателей.

Регрессионный анализ пользуется методом наименьших квадратов. Регрессия может быть линейной и множественной. Линейный тип предполагает модель из связей между двумя параметрами. Например, при наличии таких двух критериев, как урожайность клубники и полив, понятно, что именно объем поступающей влаги будет влиять на объем выращенной и собранной клубники. Если полив будет чрезмерным, то урожай пропадет. Урожайность же клубники никак не может воздействовать на систему полива.

Множественная регрессия учитывает более двух факторов одновременно. В случае с клубникой при оценке ее урожайности могут использоваться факторы полива, плодородности почвы, температурного режима, отсутствия слизняков, сортовые особенности, своевременность внесения удобрений. Все перечисленные показатели в совокупности оказывают комплексное воздействие на искомое значение – урожайность ягод.

Система показателей анализа формируется критериями классификации. Например, при экстенсивном типе развития бизнеса в качестве показателей могут выступать такие факторы:

  • количество сотрудников;
  • число заключенных договоров за отчетный период;
  • посевные площади;
  • прирост поголовья скота;
  • расширение дилерской сети;
  • объем основных фондов.

При интенсивном типе развития могут применяться следующие показатели:

  • производительность труда;
  • рентабельность;
  • урожайность;
  • фондоотдача;
  • ликвидность;
  • средний объем поставок в отчетном периоде по одному договору.

Оценка

Для оценки достоверности и эффективности модели связей необходимо построить матрицу коэффициентов. Коэффициент в случае парной корреляции вычисляется по формуле:

Диапазон значений коэффициента ограничивается показателями от -1 до +1. Если итоговое значение было получено со знаком плюс, то между рассматриваемыми переменными имеется прямая связь. Если в результате расчетов значение оказалось отрицательным, то связь будет обратной, то есть при увеличении одного из показателей другой связанный с ним фактор будет уменьшаться. Пример прямой связи – увеличение посевных площадей будет способствовать росту объема собираемой с полей продукции. Пример обратной связи – увеличение посевных площадей сопровождается снижением урожайности.

Качественный аспект тесноты связи между рассматриваемыми в аналитических расчетах показателями можно оценивать, основываясь на шкале Чеддока.

В соответствии с ее нормами связь будет расцениваться как сильная при значении коэффициента корреляции по абсолютным данным величины выше 0,7. Положительный или отрицательный знак сопровождает числовое значение – неважно, ориентироваться необходимо только на число. Если коэффициент после вычислений оказался ниже 0,3, то связь можно считать слабой.

Для дальнейших этапов анализа выбираются факторы с высокой степенью связанности. Все остальные критерии, для которых установлена слабая связь, отбрасываются. На основании полученных сведений определяется вид математического уравнения регрессии. Рассчитывается численное значение оценки параметров регрессии, определяются качества полученной модели регрессии.

Источник

Корреляционно регрессивный анализ производительности труда

В системе статистической обработки данных и аналитики часто используется сочетание методик корреляции и регрессии. Создателем корреляционно-регрессионного анализа считается Фрэнсис Гальтон, который разработал теоретическую основу методологии в 1795 году. В конце 19 века многие европейские ученые в области теории статистики углубили познания в вопросе использования количественных измерителей для отражения связей между явлениями.

Что такое корреляционно-регрессионный анализ (КРА) предприятия?

Корреляционно-регрессионный анализ (КРА) на предприятиях используется для выявления связей между несколькими факторами хозяйственной деятельности и оценки степени взаимозависимости выбранных для анализа критериев. Методика использует два алгоритма действий:

  1. Корреляция, которая направлена на построение моделей связей.
  2. Регрессия, используемая для прогнозирования событий на основе наиболее подходящей для ситуации модели связей.

Анализ проводится в несколько шагов:

  • постановка задач проведения исследования;
  • массовый сбор информации: систематизация статистических данных по конкретным показателям деятельности предприятия в динамике за несколько периодов;
  • этап создания модели связей;
  • анализ функционирования модели, оценка ее эффективности.

Для проведения КРА необходимо использовать показатели в едином измерителе, все они должны иметь числовое значение.

ОБРАТИТЕ ВНИМАНИЕ! Для достоверности данных и работоспособности модели сведения должны быть собраны за длительный отрезок времени.

Для полноты анализа надо устранить количественные ограничения на показатели модели, должно соблюдаться условие постоянной временной и территориальной структуры рассматриваемой совокупности элементов.

Где используется корреляционно-регрессионный анализ?

ВАЖНО! Пример проведения корреляционно-регрессионного анализа от КонсультантПлюс доступен по ссылке

Основные ситуации применения КРА:

  1. Тестирование отношения между несколькими величинами: выявляется, что именно этот показатель является влияющим, а второй – зависимым.
  2. Определение связи между двумя переменными факторами без уточнения причинно-следственного блока сведений.
  3. Расчет показателя по изменению значения другого фактора.

Корреляционно-регрессионная методика анализа может применяться для подготовки данных о разных сторонах деятельности компании. В бизнесе построение моделей зависимости одного показателя от других факторов и дальнейшая эксплуатация выведенной математической формулы позволяют отслеживать оперативное изменение текущей ситуации в выбранном сегменте хозяйствования и быстро принимать управленческие решения.

Например, благодаря КРА можно постоянно отслеживать уровень рыночной стоимости предприятия. Для этого на начальных этапах проводится сбор информации о динамике изменения рыночной стоимости и статистических показателей всех возможных факторов влияния:

  • уровень выручки;
  • рентабельность;
  • размер активов;
  • сумма непогашенной дебиторской или кредиторской задолженности;
  • резерв сомнительных долгов и др.

Для каждого критерия строится модель, которая выявляет, насколько сильно фактор может влиять на рыночную стоимость бизнес-проекта. Когда все модели построены, оценивается их работоспособность и адекватность. Из комплекса данных выбирается тот тип взаимосвязей, который отвечает требованиям объективности и достоверности. На основе полученной схемы связей создается уравнение, которое позволит получать прогнозные данные об изменении рыночной стоимости при условии изменения значения конкретного фактора.

Методику можно применять при формировании ценовой политики, составлении бизнес-планов, проработке вопроса о расширении ассортиментного ряда и в других сегментах предпринимательства.

Задачи, виды и показатели корреляционно-регрессионного анализа

Задачи КРА заключаются в:

  • идентификации наиболее значимых факторов влияния на конкретный показатель деятельности предприятия;
  • количественном измерении тесноты выявленных связей между показателями;
  • определении неизвестных причин возникновения связей;
  • всесторонней оценке факторов, которые признаны наиболее важными для рассматриваемого показателя;
  • выведении формулы уравнения регрессии;
  • составлении прогноза возможного результата деятельности при изменении ключевых связанных факторов с учетом возможного влияния других факторных признаков.

КРА подразумевает использование нескольких видов корреляционных и регрессионных методов. Зависимости выявляются при помощи корреляций таких типов:

  • парная, если связь устанавливается с участием двух признаков;
  • частная – взаимосвязь оценивается между искомым показателем и одним из ключевых факторов, при этом условием задается постоянное значение комплекса других факторов (то есть числовое выражение всех остальных факторов в любых ситуациях будет приниматься за определенную неизменную величину);
  • множественная – основу исследования составляет влияние на показатель деятельности не одного фактора, а сразу нескольких критериев (двух и более).

СПРАВОЧНО! Выявленные показатели степени тесноты связей отражаются коэффициентом корреляции.

На выбор коэффициента влияет шкала измерения признаков:

  1. Шкала номинальная, которая предназначена для приведения описательных характеристик объектов.
  2. Шкала ординальная нужна для вычисления степени упорядоченности объектов в привязке к одному и более признакам.
  3. Шкала количественная используется для отражения количественных значений показателей.

Регрессионный анализ пользуется методом наименьших квадратов. Регрессия может быть линейной и множественной. Линейный тип предполагает модель из связей между двумя параметрами. Например, при наличии таких двух критериев, как урожайность клубники и полив, понятно, что именно объем поступающей влаги будет влиять на объем выращенной и собранной клубники. Если полив будет чрезмерным, то урожай пропадет. Урожайность же клубники никак не может воздействовать на систему полива.

Множественная регрессия учитывает более двух факторов одновременно. В случае с клубникой при оценке ее урожайности могут использоваться факторы полива, плодородности почвы, температурного режима, отсутствия слизняков, сортовые особенности, своевременность внесения удобрений. Все перечисленные показатели в совокупности оказывают комплексное воздействие на искомое значение – урожайность ягод.

Читайте также:  Анализы при панкреатите какие должны быть

Система показателей анализа формируется критериями классификации. Например, при экстенсивном типе развития бизнеса в качестве показателей могут выступать такие факторы:

  • количество сотрудников;
  • число заключенных договоров за отчетный период;
  • посевные площади;
  • прирост поголовья скота;
  • расширение дилерской сети;
  • объем основных фондов.

При интенсивном типе развития могут применяться следующие показатели:

  • производительность труда;
  • рентабельность;
  • урожайность;
  • фондоотдача;
  • ликвидность;
  • средний объем поставок в отчетном периоде по одному договору.

Оценка

Для оценки достоверности и эффективности модели связей необходимо построить матрицу коэффициентов. Коэффициент в случае парной корреляции вычисляется по формуле:

Диапазон значений коэффициента ограничивается показателями от -1 до +1. Если итоговое значение было получено со знаком плюс, то между рассматриваемыми переменными имеется прямая связь. Если в результате расчетов значение оказалось отрицательным, то связь будет обратной, то есть при увеличении одного из показателей другой связанный с ним фактор будет уменьшаться. Пример прямой связи – увеличение посевных площадей будет способствовать росту объема собираемой с полей продукции. Пример обратной связи – увеличение посевных площадей сопровождается снижением урожайности.

Качественный аспект тесноты связи между рассматриваемыми в аналитических расчетах показателями можно оценивать, основываясь на шкале Чеддока.

В соответствии с ее нормами связь будет расцениваться как сильная при значении коэффициента корреляции по абсолютным данным величины выше 0,7. Положительный или отрицательный знак сопровождает числовое значение – неважно, ориентироваться необходимо только на число. Если коэффициент после вычислений оказался ниже 0,3, то связь можно считать слабой.

Для дальнейших этапов анализа выбираются факторы с высокой степенью связанности. Все остальные критерии, для которых установлена слабая связь, отбрасываются. На основании полученных сведений определяется вид математического уравнения регрессии. Рассчитывается численное значение оценки параметров регрессии, определяются качества полученной модели регрессии.

Источник

VII Международная студенческая научная конференция Студенческий научный форум — 2015

ПОСТРОЕНИЕ МНОГОФАКТОРНОЙ КОРРЕЛЯЦИОННО-РЕГРЕССИОННОЙ МОДЕЛИ УРОВНЯ ПРОИЗВОДИТЕЛЬНОСТИ ТРУДА РАБОЧИХ ПРОМЫШЛЕННОГО ПРЕДПРИЯТИЯ.

Данная работа посвящена известной проблеме: отбор главных факторов, определяющих производительность труда и оценка степени их влияния на ее уровень. В современных условиях высокой конкуренции и постоянно меняющихся внешних факторов, данная задача интересна и актуальная для владельцев малого и среднего бизнеса.

Имеем следующую выборку показателей, влияющих на производительность труда, на некотором промышленном предприятии:

Х1

Х2

Х3

Х4

Х5

Х1

Х2

Х3

Х4

Х5

1

16

2

17

3

18

4

19

5

20

6

21

7

22

8

23

9

24

10

25

11

26

12

27

13

28

14

29

15

30

В нашем примере производительность труда является переменной – у.

Рассмотрим влияние на производительность труда рабочих предприятия следующих факторов:

Х1 – коэффициент сменности оборудования;

Х2 – среднегодовая численность персонала;

Х4 – среднегодовой фонд заработной платы персонала;

Х5 – трудоемкость единицы продукции.

По этим данным построим регрессионную модель и проведем оценку её качества.

1.Проведем корреляционный анализ, включая проверку теста Фаррара-Глоубера на мультиколлинеарность факторов.

Была получена матрица коэффициентов парной корреляции для всех факторов модели с помощью инструмента Корреляция в Excel.

Проанализировав полученную матрицу, очевидно, что производительность труда рабочих наиболее зависит от среднегодового фонда заработной платы персонала.

Так же стоит заметить наличие сильной связи между факторами Х2 и Х4 (0,99), при построении модели, необходимо будет избавиться от одного из них для увеличения точности результатов.

1.Далее сделаем проверку на мультиколлинеарность с помощью теста Фаррара-Глоубера всего массива переменных.

Вычислим наблюдаемое значение статистики Фаррара-Глоубера по формуле:

где n=30- количество наблюдений; k=5 -количество факторов в модели.

Фактическое значение этого критерия FG сравниваем с табличным значением критерия χ 2 с степенью свободы и уровне значимости α=0,05. Получаем: FGкр=18,3. Так как > FGкр(158,45>18,3), то в массиве объясняющих переменных существует мультиколлинеарность.

2.Следующим этапом проведем проверку на мультиколлинеарность каждой переменной с другими.

Вычислили обратную матрицу R -1 с помощью функции МОБР в excel.

Вычислили F-критерий по формуле ,где cij-диагональные элементы матрицы R -1 .

Фактические значения F –критериев сравниваются с табличным значением Fтабл=2,5277. Соответственно, все фактические значения больше табличного, то все исследуемые переменные мультиколлинеарны с другими. Больше других на общую мультиколлинеарность факторов влияет фактор — среднегодовой фонд заработной платы персонала, меньше всего – фондоотдача.

3.Осуществим проверку мультиколлинеарности каждой пары переменных.

Вычислим частные коэффициенты корреляции по формуле ,

где элементы матрицы R -1 . Затем вычислили .

Фактические значения t –критериев сравниваются с табличным значением ttabl=2,069 при степенях свободы (n-k-1)=23 и уровне значимости α=0,05.

Анализируя полученные результаты, можно сделать вывод, что три пары факторов имеют высокую статистически значимую частную корреляцию, т.е. мультиколлинеарны. Поэтому нужно исключить две переменных коллинеарных пар. Из пар коэффициент сменности оборудования и трудоемкость единицы продукции и фондоотдача и трудоемкость единицы не будем исключать факторы. А из пары: среднегодовая численность персонала и среднегодовой фонд заработной платы персонала исключим фактор среднегодовая численность персонала.

В итоге, после проверки тестом Фаррара-Глобера остается четыре фактора

Х1 – коэффициент сменности оборудования;

Х4 – среднегодовой фонд заработной платы персонала;

Х5 – трудоемкость единицы продукции.

2.Пошаговый отбор факторов методом исключения из модели статистически незначимых переменных.

Пошаговый отбор следует начинать с включения всех имеющихся факторов, но в связи с отсутствием смысла включать факторы из известных коллинеарных пар, начнем отбор с 4-х факторного уравнения.

Сравнивая t статистики с табличным значением, оказалось, что статистически незначим фактор фондоотдача. На следующем этапе отбора исключаем трудоемкость единицы продукции. Последним исключаем коэффициент сменности оборудования. В итоге получили уравнение, в котором все факторы статистически значимы, а именно X4— трудоемкость единицы продукции. Запишем уравнение регрессии: Y=6,014+0,0000569X1.

Получается, что увеличивая среднегодовой фонд заработной платы на 1 % ,производительность труда в среднем вырастает на 0,00006%.

3.Оценка качества модели регрессии.

Расчетное значение F- критерия Фишера больше табличного F- критерия (12,01>4,17) ,следовательно, уравнение регрессии статистически значимо на 95% уровне значимости. Поэтому связь производительности с заработной платой существенна.

4.Оценка уровня точности модели.

Для оценки уровня точности воспользуемся значением стандартной ошибки модели, которое рассчиталось в первой таблице при использовании регрессионной статистики.

Для сравнения необходимо рассчитать стандартную ошибку результативного признака Y.Произведем расчеты в excel с помощью функции СТАНДОТКЛОН.

Получаем, что Sy=1,97>Se=1,688,следовательно, однофакторная регрессионная модель точная.

5.Оценка влияния факторов на результирующую переменную.

Коэффициент эластичности находится по формуле: =0,193.

При изменении фонда заработной платы на 1 % производительность труда вырастит на 0,193%.

Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

=0,54. Производительность поднимется на 0,54 % с каждого работника.

Был проведен анализ факторов, оказывающих влияние на производительность труда на производстве. Результатом анализа стала построенная регрессионная модель, с отобранным с помощью метода пошагового отбора фактора.

Полученные данные могут быть использованы на предприятиях для повышения производительности труда.

Список использованной литературы:

Новиков А.И. Эконометрика :Учеб. Пособие / А.И.Новиков . – Москва : ИТД “Дашков и К”, 2013. – 224C.

О.С. Сухарев. Производительность труда в промышленности: системная задачу управления / О.С. Сухарев, Е.Н. Стрижакова // Экономика и предпринимательство.- 2014.-№8.- С.389-402.

Орлова И.В., Половников В.А. Экономико-математические методы и модели: компьютерное моделирование. / учебное пособие для студентов высших учебных заведений, обучающихся по специальности "Статистика" и другим экономическим специальностям / Москва, 2011. Сер. Вузовский учебник (3-е издание, переработанное и дополненное)

Орлова И.В. Экономико-математическое моделирование: Практическое пособие по решению задач. — 2-е издание, испр. и доп. – М.: Вузовский учебник: ИНФРА-М, 2012.

Орлова И.В., Филонова Е.С., Агеев А.В. ЭконометрикаКомпьютерный практикум для студентов третьего курса, обучающихся по специальностям 080105.65 «Финансы и кредит», 080109.65 «Бухгалтерский учет, анализ и аудит» / Москва, 2011.

Турундаевский В.Б. Компьютерное моделирование экономико-математических методов / Международный журнал прикладных и фундаментальных исследований. 2014. № 1-2. С. 229-230.

Источник

Adblock
detector