Для чего используют факторный анализ



Факторный анализ. Методы. Виды и модели

Факторный анализ применяют в различных науках, например, в психологии и психометрии, но чаще всего его используют в экономике. С его помощью компания может понять, динамика каких показателей оказывает наибольшее влияние на конечный результат.

Понятие факторного анализа

Факторным анализом называют метод исследования, который позволяет определить влияние той или иной переменной на конечный результат. Для его проведения нужно подготовить информацию по каждому параметру. В процессе исследования можно понять внутреннюю взаимосвязь между факторами, влияющими на итог деятельности.

Оценка стоимости бизнеса Финансовый анализ по МСФО Финансовый анализ по РСБУ
Расчет NPV, IRR в Excel Оценка акций и облигаций

Приемы факторного анализа

Основой факторного анализа является его модель:

ФМ = А * Б * В…Я + КР

где ФМ – факторная модель;

А, Б, В…Я – факторы, используемые для анализа;

КР – конечный результат деятельности.

Но, чтобы понять взаимосвязь между показателями и итогом работы, исследование проводят при помощи распространенных приемов:

  • детерминированного;
  • стохастического;
  • статического и динамического;
  • ретроспективного и перспективного.

В процессе исследования можно использовать все приемы. Но в экономике зачастую применяют один из них.

Детерминированный факторный анализ

Для проведения детерминированного факторного анализа используют несколько моделей:

  • кратную;
  • адаптивную;
  • мультипликативную.

В процессе осуществления вычислений при помощи каждой из них используют данные об исследуемых факторах, а также конечный результат.

Модель детерминированного факторного анализа Формула Расшифровка формулы
Кратная А / А1 А, А1 – факторы
Адаптивная А + А1 + А2 + … +Ан А, А1, А2, Ан – факторы
Мультипликативная А * А1 * А2 * … *Ан А, А1, А2, Ан – факторы

То есть, детерминированный факторный анализ проводится путем нахождения частного от исследуемых факторов, их произведения или суммы.

Методы детерминированного факторного анализа

Детерминированный факторный анализ проводят при помощи следующих методов:

  • цепных постановок;
  • логарифмирования;
  • абсолютных разниц;
  • интегрального;
  • относительных разниц.

Для получения достоверного результата, нужно тщательно отобрать факторы, которые непосредственно влияют на конечный результат деятельности.

Метод цепных постановок

Метод цепных подстановок представляет собой последовательную замену одного из показателей прошлого периода с отчетным. При этом все остальные факторы остаются нетронутыми. Изменяя показатель, необходимо проводить новый расчет.

Важно! При вычислении получается так, что в первом исследовании используют все факторы прошлого периода, а в последнем – фактического.

Для анализа используют факторную модель:

ФМ = А * Б * В…Я,

где А, Б, В…Я – показатели, используемые в процессе.

Чтобы определить взаимосвязь между факторами и конечным результатом, необходимо найти разницу между результатами расчетов. Для этого из итога второго расчета нужно отнять результат первого, из третьего – второго, из четвертого – третьего и так далее. В процессе исследования важно соблюдать строгую последовательность, в противном случае, анализ может показать некорректную информацию.

Метод логарифмирования

Метод логарифмирования считается одним из наиболее точных способов факторного анализа. Он заключается в составлении логарифма на основании показателей прошлого и отчетного периода.

Для этого находят сумму всех факторов, затем записывают алгебраическое выражение в виде произведения отношения фактических факторов к плановым. А уже на основании него составляют логарифм.

Метод абсолютных разниц

Основой для вычисления методом абсолютных разниц служит факторная модель:

ФМ = А * Б * В…Я,

где А, Б, В…Я – показатели, используемые в процессе.

Но для начала нужно найти абсолютные отклонения. Для этого из факторов базисного периода отнимают плановые показатели.

Метод абсолютных разниц

Для определения взаимосвязи между ними необходимо провести анализ при помощи факторной модели, заменяя относительные результаты на абсолютные отклонения.

Интегральный метод

Интегральный метод используется только тогда, когда конечный результат можно представить в виде функции от нескольких показателей. Интегральное выражение показывает зависимость функции от аргументов.

Интегральный метод

Метод относительных разниц

Метод относительных разниц используется для измерения влияния факторов на динамику конечного результата в мультипликативных и смешанных моделях. Он применяется в том случае, если данные для расчета выражены в относительных отклонения факторных показателей (процентах).

При проведении анализа данным методом за основу берется факторная модель:

ФМ = А * Б * В…Я,

где А, Б, В…Я – показатели, используемые в процессе.

Относительные отклонения находят по формуле:

(Аф – Ап) / Ап,

где Аф – фактический показатель;

Ап – плановый или базисный показатель.

Стохастический факторный анализ

Стохастический факторный анализ проводится только в том случае, если нет возможности найти прямой взаимосвязи между конечным результатом и факторами, влияющими на него. Как правило, его применяют дополнительно к детерминированному исследованию. Стохастический факторный анализ проводится с использованием следующих методов:

  • математического программирования;
  • парной корреляции;
  • теории игр;
  • матричной модели;
  • множественного корреляционного анализа.

Метод математического программирования

Метод математического программирования применяется в качестве инструмента по оптимизации экономической деятельности.

Метод парной корреляции

Метод парной корреляции применяется для определения взаимосвязи между показателями, которые не находятся в функциональной зависимости. То есть влияние одного показателя на другой происходит не всегда, а под воздействием определенных корреляций.

Метод парной корреляции позволяет:

  • определить уровень регрессии путем составления модели фактических показателей;
  • найти коэффициент корреляции путем определения тесноты взаимосвязи между факторами.

Метод теории игр

Метод теории игр используется в нескольких случаях:

  • условия работы не определены;
  • между сторонами существует конфликт;
  • стороны имеют разные интересы.

То есть, на конечный результат может повлиять поведение другой стороны. Сам метод основан на предположении, сформированном путем составления теории математических моделей.

Метод матричной модели

Метод матричной модели выглядит как схематическое изображение экономических явлений. Например, затраты и выпуск предприятия располагают в шахматном виде. Именно на основании полученного изображения можно понять, насколько затраты повлияли на конечный результат.

Метод множественного корреляционного анализа

Метод множественного корреляционного анализа помогает:

  • определить зависимость между одним фактором с совокупностью других показателей;
  • понять, насколько взаимосвязан один показатель от другого при исключении всех остальных факторов.

Исследование проводят при помощи специализированных компьютерных программ.

Статистический и динамический факторный анализ

Статистический факторный анализ используют для выявления взаимосвязи между показателями, которые повлияли на конечный результат за конкретный промежуток времени.

В свою очередь, динамическое исследование позволяет определить, что именно повлияло на динамику итога.

Ретроспективный и перспективный факторный анализ

Ретроспективный факторный анализ показывает, почему произошли изменения по сравнению с планом или базисным периодом. А перспективный метод позволяет оценить взаимосвязь между факторами и конечным результатом на будущее.

Этапы факторного анализа

Не важно, какой метод факторного анализа будет использован в процессе исследования. В любом случае, оно делится на несколько этапов:

  1. В первую очередь, отбираются все факторы, которые могут повлиять на результат. Зачастую используют данные бухгалтерского учета. Однако допускается использование иных источников информации.
  2. На следующем этапе важно классифицировать факторы по любому из удобных признаков. Например, по затратам, по экономическим показателям или по сезону.
  3. После того, как все показатели отобраны и классифицированы, можно проводить анализ одним или несколькими методами. Для этого производят расчеты для каждого фактора по отдельности.
  4. Следующий этап – нахождение взаимосвязи между показателями.
  5. В заключение, на основании проведенного исследования делают вывод.

Важно! Для проведения факторного анализа необходимо соответствующее программное обеспечение.

Как провести факторный анализ финансовой деятельности предприятия

Для проведения факторного анализа финансовой деятельности предприятия необходимо найти все показатели, которые влияют на конечный результат. Зачастую это:

  • объем продаж;
  • себестоимость единицы продукции;
  • затраты на производство;
  • индекс изменения цены;
  • чистая прибыль;
  • доход предприятия.

Как правило, факторный анализ проводят при помощи таблицы. В нее заносятся плановые и фактические показатели. На их основании производят вычисления, а результаты также вписывают в таблицу, после чего делают выводы.

Пример

Например, для проведения факторного анализа прибыли предприятия в качестве исследуемых факторов используют: доход, себестоимость единицы товара, а также чистый доход.

Фактор Продажи Абсолютная динамика, в тыс. Относительная динамика, в %
Базисный период, в тыс. Отчетный период, в тыс.
Доход 70 80 1 14,3
Себестоимость 65 67 2 3,1
Чистая прибыль 12 13 1 8,3

На основании полученной информации можно сделать вывод о том, что себестоимость единицы товара выросла на 3,1%, что непосредственно для предприятия является негативным моментом. Но, несмотря на это, доход предприятия также увеличился, что позволило получить более высокую чистую прибыль.

Источник

Факторный анализ

Хозяйственные процессы и конечные результаты складываются под влиянием объективных и субъективных, внешних и внутренних факторов.

Например, на величину валовой продукции непосредственное влияние оказывают такие факторы, как численность рабочих и уровень производительности труда. Субъективные или косвенные факторы — внутренние (руководство тем или иным производственным коллективом, организация производства, финансов, экономическая или организационная подготовленность исполнителей и т.д.). Следовательно, это изучение и измерение влияния факторов на величину исследуемых экономических показателей. Без всестороннего и тщательного изучения факторов невозможно сделать обоснованные выводы о результатах деятельности, выявить резервы производства, обосновать планы и управленческие решения.

Например, в модели П = ВП — С (прибыль равна выручке за минусом себестоимости) прибыль — результативный показатель, а в модели R пр = П / РП (рентабельность продаж равна прибыли, деленной на выручку от реализации) прибыль является фактором по отношению к результативному показателю рентабельности продаж.

Различают следующие противоположные типы факторного анализа:

  • детерминированный и стохастический;
  • прямой и обратный;
  • одноступенчатый и многоступенчатый;
  • статический и динамический;
  • ретроспективный (исторический) и перспективный (прогнозный).

Факторный анализ может быть одноуровневым и многоуровневым.

Основные задачи факторного анализа:

  1. Выявление, поиск факторов.
  2. Отбор факторов для анализа исследуемых показателей.
  3. Классификация и систематизация их с целью обеспечения системного подхода.
  4. Моделирование взаимосвязей между результативными и факторными показателями.
  5. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.
  6. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Факторный анализ — это один из способов снижения размерности, то есть выделения во всей совокупности признаков тех, которые действительно влияют на изменение зависимой переменной. Или группировки сходно влияющих на изменение зависимой переменной признаков. Или группировки просто сходно изменяющихся признаков. Предполагается, что наблюдаемые переменные являются лишь линейной комбинацией неких ненаблюдаемых факторов. Некоторые из этих факторов являются общими для нескольких переменных, некоторые характерно проявляют себя только в одной. Те, что проявляют себя только в одной, очевидно, ортогональны друг другу и не вносят вклад к ковариацию переменных, а общие — как раз и вносят эту ковариацию. Задачей факторного анализа является как раз восстановление исходной факторной структуры исходя из наблюдаемой структуры ковариации переменных, несмотря на случайные ошибки ковариации, неизбежно возникающие в процессе снятия наблюдения.

Коэффициент взаимосвязи между некоторой переменной и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой (Factor load) данной переменной по данному общему фактору. Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору.

Процесс стохастического факторного анализа состоит из трех больших этапов:

  1. Подготовки ковариационной матрицы (Иногда вместо нее используется корреляционная матрица);
  2. Выделения первоначальных ортогональных векторов (основной этап);
  3. Вращение с целью получения окончательного решения.

Подготовка к факторному анализу

При подготовке к факторному анализу часто (некоторые методы этого не требуют, но большая часть — требует) составляют ковариационные и корреляционные матрицы. Это матрицы, составленные из ковариации и корреляций векторов-атрибутов (строки и столбцы — атрибуты, пересечение — ковариация/корреляция).

Ковариация двух векторов:

 \mathbb<M data-lazy-src=

Обратите внимание, что в этом случае корреляция и ковариация двух векторов — числа, так как считаются через матожидание вектора, а матожидание вектора — число.

Таким образом, мы переходим от матрицы, составленной из объектов (которые могут быть и не математическими), к матрице, оперирующей уже исключительно математическими понятиями, и абстрагируемся от объектов, уделяя внимания только атрибутам.

Нахождение первичной структуры факторов


Метод главных компонент

Метод главных компонент стремится выделить оси, вдоль которых количество информации максимально, и перейти к ним от исходной системы координат. При этом некоторое количество информации может теряться, но зато сокращается размерность.

Этот метод проходит практически через весь факторный анализ, и может меняться путем подачи на вход разных матриц, но суть его остается неизменной.

Основной математический метод получения главных осей — нахождение собственных чисел и собственных векторов ковариационной матрицы таких, что:

λ — собственное число R, R — матрица ковариации, V — собственный вектор R. Тогда :

и решение есть когда:

где R — матрица ковариации, λ — собственное число R, E — единичная матрица. Затем считаем этот определитель для матрицы соответствующей размерности.

V находим, подставляя собственные числа по очереди в

и решая соответствующие системы уравнений.

Сумма собственных чисел равна числу переменных, произведение — детерминанту корелляционной матрицы. Собственное число представляет собой дисперсию оси, наибольшее — первой и далее по убыванию до наименьшего — количество информации вдоль последней оси. Доля дисперсии, приходящаяся на данную компоненту, считается отсюда легко: надо разделить собственное число на число переменных m.

Коэффициенты нагрузок для главных компонент получаются делением коэффициентов собственных векторов на квадратный корень соответствующих собственных чисел.

Алгоритм NIPALS вычисления главных компонент

На практике чаще всего для определения главных компонент используют итерационные методы, к примеру, NIPALS:

0. Задается 0 < ε 1 < 1 — критерий окончания поиска главного компонента, и 0 < ε 2 < 1 — критерий окончания поиска главных компонентов, исходная отцентрированная матрица X , i=1 — номер главной компоненты.

1. Берется T_k = x_j \in X— вектор-столбец, k — шаг алгоритма, j — любой столбец (просто чтобы было с чего начинать апроксимизацию).

2. Вектор T k транспонируется.

3. Считается P_k = \frac <T_k^T X data-lazy-src=

7. X=X-T_k P_k^T.

8. Если | X | < ε , то стоп — найдены все основные компоненты, нас удовлетворяющие. Иначе i++. Иди на 1.

Другие методы

Метод сингулярных компонент

Метод максимального правдоподобия

Метод альфа-факторного анализа

Вращение

Вращение — это способ превращения факторов, полученных на предыдущем этапе, в более осмысленные. Бывает графическое (проведение осей, не применяется при более чем 2мерном анализе), аналитическое (выбирается некий критерий вращения, различают ортогональное и косоугольное) и матрично-приближенное (вращение состоит в приближении к некой заданной целевой матрице).

Результатом вращения является вторичная структура факторов. Первичная факторная структура (состоящая из первичных нагрузок (полученных на предыдущем этапе)) — это, фактически, проекции точек на ортогональные оси координат. Очевидно, что если проекции будут нулевыми, то структура будет проще. А проекции будут нулевыми, если точка лежит на какой-то оси. Де-факто вращение есть переход от одной системы координат к другой при известных координатах в одной системе(первичные факторы) и итеративно подбираемых координатах в другой системе (вторичных факторов).

При получении вторичной структуры стремятся перейти к такой системе координат, чтобы провести через точки (объекты) как можно больше осей, чтобы как можно больше проекции (и соответственно нагрузок) были нулевыми. При этом могут сниматься ограничения ортогональности и убывания значимости от первого к последнему факторам, характерные для первичной структуры, иВторичная структура является более простой, чем первичная, и потому более ценна.

Обозначим понятие простой структуры. Пусть r — число (общих) факторов первичной структуры , V — матрица вторичной структуры, состоящая из нагрузок (координат) вторичных факторов(строка — переменная из R, столбец — вторичный фактор).

  1. В каждой строке матрицы V должен быть хотя бы 1 нулевой элемент;
  2. Каждый столбец из матрицы V должен содержать не менее r нулей;
  3. У одного из столбцов из любой пары из матрицы V должно быть несколько нулевых коэффициентов(нагрузок) в тех позициях, где для другого столбца они ненулевые (для различения);
  4. При числе факторов больше 4 в каждой паре должно быть несколько нулевых нагрузок в одних и тех же строках;
  5. Для каждой пары столбцов должно быть как можно меньше больших по величине нагрузок в одних и тех же строках.

Тогда структура будет хорошо подходить для интерпретации и будет выделяться однозначно. Наипростейшей является структура, где каждая переменная имеет факторную сложность (количество факторов, которые на нее влияют и оказывают факторную нагрузку), равную 1 (все факторы будут характерными). Реально это не достижимо, и потому мы стремимся приблизится к простой структуре при помощи различных методов. Существует эмпирическое правило, что для каждого фактора по крайней мере три переменных имеют значительную на него нагрузку.

Аналитическое вращение

Наиболее интересно аналитическое вращение, так как позволяет получить вторичную структуру исходя из достаточно критериев и без априорного знания о структуре факторной матрицы.

Ортогональное вращение

Ортогональное вращение подразумевает, что мы будем вращать факторы, но не будем нарушать их ортогональности друг другу. Ортогональное вращение подразумевает умножение исходной матрицы первичных нагрузок на ортогональную матрицу R(такую матрицу, что |R|=1, R*R^T=E, R= r \times r)

Алгоритм ортагонального вращения в общем случае таков:

0. B — матрица первичных факторов.

1. Ищем ортогональную матрицу R T размера 2*2 для двух столбцов(факторов) b i и b j матрицы B такую, что критерий для матрицы [ b i b j ] R максимален.

2. Заменяем столбцы b i и b j на столбцы [b_i b_j] \times R.

3. Проверяем, все ли столбцы перебрали. Если нет, то 1.

4. Проверяем, что критерий для всей матрицы вырос. Если да, то 1. Если нет, то конец.

Критерий квартимакс

Формализуем понятие факторной сложности q i-ой переменной через дисперсию квадратов факторных нагрузок факторов:

Формализация понятия факторной сложности,

где r — число столбцов факторной матрицы, b i j — факторная нагрузка j-го фактора на i-ю переменную, \overline <b_ij data-lazy-src=

Учитывая, что \sum_<j=1 data-lazy-src=

Для чего используют факторный анализ

Хозяйственные процессы и конечные результаты складываются под влиянием объективных и субъективных, внешних и внутренних факторов.

Например, на величину валовой продукции непосредственное влияние оказывают такие факторы, как численность рабочих и уровень производительности труда. Субъективные или косвенные факторы — внутренние (руководство тем или иным производственным коллективом, организация производства, финансов, экономическая или организационная подготовленность исполнителей и т.д.). Следовательно, это изучение и измерение влияния факторов на величину исследуемых экономических показателей. Без всестороннего и тщательного изучения факторов невозможно сделать обоснованные выводы о результатах деятельности, выявить резервы производства, обосновать планы и управленческие решения.

Например, в модели П = ВП — С (прибыль равна выручке за минусом себестоимости) прибыль — результативный показатель, а в модели R пр = П / РП (рентабельность продаж равна прибыли, деленной на выручку от реализации) прибыль является фактором по отношению к результативному показателю рентабельности продаж.

Различают следующие противоположные типы факторного анализа:

  • детерминированный и стохастический;
  • прямой и обратный;
  • одноступенчатый и многоступенчатый;
  • статический и динамический;
  • ретроспективный (исторический) и перспективный (прогнозный).

Факторный анализ может быть одноуровневым и многоуровневым.

Основные задачи факторного анализа:

  1. Выявление, поиск факторов.
  2. Отбор факторов для анализа исследуемых показателей.
  3. Классификация и систематизация их с целью обеспечения системного подхода.
  4. Моделирование взаимосвязей между результативными и факторными показателями.
  5. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.
  6. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Факторный анализ — это один из способов снижения размерности, то есть выделения во всей совокупности признаков тех, которые действительно влияют на изменение зависимой переменной. Или группировки сходно влияющих на изменение зависимой переменной признаков. Или группировки просто сходно изменяющихся признаков. Предполагается, что наблюдаемые переменные являются лишь линейной комбинацией неких ненаблюдаемых факторов. Некоторые из этих факторов являются общими для нескольких переменных, некоторые характерно проявляют себя только в одной. Те, что проявляют себя только в одной, очевидно, ортогональны друг другу и не вносят вклад к ковариацию переменных, а общие — как раз и вносят эту ковариацию. Задачей факторного анализа является как раз восстановление исходной факторной структуры исходя из наблюдаемой структуры ковариации переменных, несмотря на случайные ошибки ковариации, неизбежно возникающие в процессе снятия наблюдения.

Коэффициент взаимосвязи между некоторой переменной и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой (Factor load) данной переменной по данному общему фактору. Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору.

Процесс стохастического факторного анализа состоит из трех больших этапов:

  1. Подготовки ковариационной матрицы (Иногда вместо нее используется корреляционная матрица);
  2. Выделения первоначальных ортогональных векторов (основной этап);
  3. Вращение с целью получения окончательного решения.

Подготовка к факторному анализу

При подготовке к факторному анализу часто (некоторые методы этого не требуют, но большая часть — требует) составляют ковариационные и корреляционные матрицы. Это матрицы, составленные из ковариации и корреляций векторов-атрибутов (строки и столбцы — атрибуты, пересечение — ковариация/корреляция).

Ковариация двух векторов:

 \mathbb<M data-lazy-src=

Обратите внимание, что в этом случае корреляция и ковариация двух векторов — числа, так как считаются через матожидание вектора, а матожидание вектора — число.

Таким образом, мы переходим от матрицы, составленной из объектов (которые могут быть и не математическими), к матрице, оперирующей уже исключительно математическими понятиями, и абстрагируемся от объектов, уделяя внимания только атрибутам.

Нахождение первичной структуры факторов


Метод главных компонент

Метод главных компонент стремится выделить оси, вдоль которых количество информации максимально, и перейти к ним от исходной системы координат. При этом некоторое количество информации может теряться, но зато сокращается размерность.

Этот метод проходит практически через весь факторный анализ, и может меняться путем подачи на вход разных матриц, но суть его остается неизменной.

Основной математический метод получения главных осей — нахождение собственных чисел и собственных векторов ковариационной матрицы таких, что:

λ — собственное число R, R — матрица ковариации, V — собственный вектор R. Тогда :

и решение есть когда:

где R — матрица ковариации, λ — собственное число R, E — единичная матрица. Затем считаем этот определитель для матрицы соответствующей размерности.

V находим, подставляя собственные числа по очереди в

и решая соответствующие системы уравнений.

Сумма собственных чисел равна числу переменных, произведение — детерминанту корелляционной матрицы. Собственное число представляет собой дисперсию оси, наибольшее — первой и далее по убыванию до наименьшего — количество информации вдоль последней оси. Доля дисперсии, приходящаяся на данную компоненту, считается отсюда легко: надо разделить собственное число на число переменных m.

Коэффициенты нагрузок для главных компонент получаются делением коэффициентов собственных векторов на квадратный корень соответствующих собственных чисел.

Алгоритм NIPALS вычисления главных компонент

На практике чаще всего для определения главных компонент используют итерационные методы, к примеру, NIPALS:

0. Задается 0 < ε 1 < 1 — критерий окончания поиска главного компонента, и 0 < ε 2 < 1 — критерий окончания поиска главных компонентов, исходная отцентрированная матрица X , i=1 — номер главной компоненты.

1. Берется T_k = x_j \in X— вектор-столбец, k — шаг алгоритма, j — любой столбец (просто чтобы было с чего начинать апроксимизацию).

2. Вектор T k транспонируется.

3. Считается P_k = \frac <T_k^T X data-lazy-src=

7. X=X-T_k P_k^T.

8. Если | X | < ε , то стоп — найдены все основные компоненты, нас удовлетворяющие. Иначе i++. Иди на 1.

Другие методы

Метод сингулярных компонент

Метод максимального правдоподобия

Метод альфа-факторного анализа

Вращение

Вращение — это способ превращения факторов, полученных на предыдущем этапе, в более осмысленные. Бывает графическое (проведение осей, не применяется при более чем 2мерном анализе), аналитическое (выбирается некий критерий вращения, различают ортогональное и косоугольное) и матрично-приближенное (вращение состоит в приближении к некой заданной целевой матрице).

Результатом вращения является вторичная структура факторов. Первичная факторная структура (состоящая из первичных нагрузок (полученных на предыдущем этапе)) — это, фактически, проекции точек на ортогональные оси координат. Очевидно, что если проекции будут нулевыми, то структура будет проще. А проекции будут нулевыми, если точка лежит на какой-то оси. Де-факто вращение есть переход от одной системы координат к другой при известных координатах в одной системе(первичные факторы) и итеративно подбираемых координатах в другой системе (вторичных факторов).

При получении вторичной структуры стремятся перейти к такой системе координат, чтобы провести через точки (объекты) как можно больше осей, чтобы как можно больше проекции (и соответственно нагрузок) были нулевыми. При этом могут сниматься ограничения ортогональности и убывания значимости от первого к последнему факторам, характерные для первичной структуры, иВторичная структура является более простой, чем первичная, и потому более ценна.

Обозначим понятие простой структуры. Пусть r — число (общих) факторов первичной структуры , V — матрица вторичной структуры, состоящая из нагрузок (координат) вторичных факторов(строка — переменная из R, столбец — вторичный фактор).

  1. В каждой строке матрицы V должен быть хотя бы 1 нулевой элемент;
  2. Каждый столбец из матрицы V должен содержать не менее r нулей;
  3. У одного из столбцов из любой пары из матрицы V должно быть несколько нулевых коэффициентов(нагрузок) в тех позициях, где для другого столбца они ненулевые (для различения);
  4. При числе факторов больше 4 в каждой паре должно быть несколько нулевых нагрузок в одних и тех же строках;
  5. Для каждой пары столбцов должно быть как можно меньше больших по величине нагрузок в одних и тех же строках.

Тогда структура будет хорошо подходить для интерпретации и будет выделяться однозначно. Наипростейшей является структура, где каждая переменная имеет факторную сложность (количество факторов, которые на нее влияют и оказывают факторную нагрузку), равную 1 (все факторы будут характерными). Реально это не достижимо, и потому мы стремимся приблизится к простой структуре при помощи различных методов. Существует эмпирическое правило, что для каждого фактора по крайней мере три переменных имеют значительную на него нагрузку.

Аналитическое вращение

Наиболее интересно аналитическое вращение, так как позволяет получить вторичную структуру исходя из достаточно критериев и без априорного знания о структуре факторной матрицы.

Ортогональное вращение

Ортогональное вращение подразумевает, что мы будем вращать факторы, но не будем нарушать их ортогональности друг другу. Ортогональное вращение подразумевает умножение исходной матрицы первичных нагрузок на ортогональную матрицу R(такую матрицу, что |R|=1, R*R^T=E, R= r \times r)

Алгоритм ортагонального вращения в общем случае таков:

0. B — матрица первичных факторов.

1. Ищем ортогональную матрицу R T размера 2*2 для двух столбцов(факторов) b i и b j матрицы B такую, что критерий для матрицы [ b i b j ] R максимален.

2. Заменяем столбцы b i и b j на столбцы [b_i b_j] \times R.

3. Проверяем, все ли столбцы перебрали. Если нет, то 1.

4. Проверяем, что критерий для всей матрицы вырос. Если да, то 1. Если нет, то конец.

Критерий квартимакс

Формализуем понятие факторной сложности q i-ой переменной через дисперсию квадратов факторных нагрузок факторов:

Формализация понятия факторной сложности,

где r — число столбцов факторной матрицы, b i j — факторная нагрузка j-го фактора на i-ю переменную, \overline <b_ij data-lazy-src=

Учитывая, что \sum_<j=1 data-lazy-src=

Факторный анализ

Факторный анализ — многомерный метод, применяемый для изучения взаимосвязей между значениями переменных. Предполагается, что известные переменные зависят от меньшего количества неизвестных переменных и случайной ошибки.

Содержание

Краткая история

Факторный анализ впервые возник в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи факторного анализа были заложены английским психологом и антропологом, основателем евгеники Гальтоном Ф. (1822—1911), внесшим также большой вклад в исследование индивидуальных различий. Но в разработку Факторного анализа внесли вклад многие ученые. Разработкой и внедрением факторного анализа в психологию занимались такие ученые как Спирмен Ч. (1904, 1927, 1946), Терстоун Л. (1935, 1947, 1951) и Кеттел Р. (1946, 1947, 1951). Также нельзя не упомянуть английского математика и философа Пирсона К., в значительной степени развившего идеи Ф. Гальтона, американского математика Хотеллинга Г., разработавшего современный вариант метода главных компонент. Внимания заслуживает и английский психолог Айзенк Г., широко использовавший Факторный анализ для разработки психологической теории личности. Математически факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и др. Сегодня факторный анализ включён во все пакеты статистической обработки данных — R, SAS, SPSS, Statistica и т. д.

Задачи и возможности факторного анализа

Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Таким образом можно выделить 2 цели Факторного анализа:

  • определение взаимосвязей между переменными, (классификация переменных), т. е. «объективная R-классификация» [1][2] ;
  • сокращение числа переменных необходимых для описания данных.

При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей. Например, анализируя оценки, полученные по нескольким шкалам, исследователь замечает, что они сходны между собой и имеют высокий коэффициент корреляции, он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором. Данный фактор влияет на многочисленные показатели других переменных, что приводит нас к возможности и необходимости выделить его как наиболее общий, более высокого порядка. Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонентов (МГК). Суть данного метода состоит в замене коррелированных компонентов некоррелированными факторами. Другой важной характеристикой метода является возможность ограничиться наиболее информативными главными компонентами и исключить остальные из анализа, что упрощает интерпретацию результатов. Достоинство МГК также в том, что он — единственный математически обоснованный метод факторного анализа [1] [3] .

Факторный анализ может быть:

  • разведочным — он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках;
  • конфирматорным, предназначенным для проверки гипотез о числе факторов и их нагрузках (примечание 2).

Условия применения факторного анализа

Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:

  • Все признаки должны быть количественными.
  • Число наблюдений должно быть в два раза больше числа переменных.
  • Выборка должна быть однородна.
  • Исходные переменные должны быть распределены симметрично.
  • Факторный анализ осуществляется по коррелирующим переменным [3] .

Основные понятия факторного анализа

  • Фактор — скрытая переменная
  • Нагрузка — корреляция между исходной переменной и фактором

Процедура вращения. Выделение и интерпретация факторов

Сущностью факторного анализа является процедура вращения факторов, то есть перераспределения дисперсии по определённому методу. Цель ортогональных вращений — определение простой структуры факторных нагрузок, целью большинства косоугольных вращений является определение простой структуры вторичных факторов, то есть косоугольное вращение следует использовать в частных случаях. Поэтому ортогональное вращение предпочтительнее. Согласно определению Мюльека простая структура соответствует требованиям:

  • в каждой строке матрицы вторичной структуры V должен быть хотя бы один нулевой элемент;
  • Для каждого столбца k матрицы вторичной структуры V должно существовать подмножество из r линейно-независимых наблюдаемых переменных, корреляции которых с k-м вторичным фактором — нулевые. Данный критерий сводится к тому, что каждый столбец матрицы должен содержать не менее r нулей.
  • У одного из столбцов каждой пары столбцов матрицы V должно быть несколько нулевых коэффициентов (нагрузок) в тех позициях, где для другого столбца они ненулевые. Это предположение гарантирует различимость вторичных осей и соответствующих им подпространств размерности r—1 в пространстве общих факторов.
  • При числе общих факторов больше четырех в каждой паре столбцов должно быть некоторое количество нулевых нагрузок в одних и тех же строках. Данное предположение дает возможность разделить наблюдаемые переменные на отдельные скопления.
  • Для каждой пары столбцов матрицы V должно быть как можно меньше значительных по величине нагрузок, соответствующих одним и тем же строкам. Это требование обеспечивает минимизацию сложности переменных.

(В определении Мьюлейка через r обозначено число общих факторов, а V — матрица вторичной структуры, образованная координатами (нагрузками) вторичных факторов, получаемых в результате вращения.) Вращение бывает:

  • ортогональным
  • косоугольным.

При первом виде вращения каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, поэтому факторы оказываются независимыми, некоррелированными друг от друга (к этому типу относится МГК). Второй вид — это преобразование, при котором факторы коррелируют друг с другом. Преимущество косоугольного вращения состоит в следующем: когда в результате его выполнения получаются ортогональные факторы, можно быть уверенным, что эта ортогональность действительно им свойственна, а не привнесена искусственно. Существует около 13 методов вращения в обоих видах, в статистической программе SPSS 10 доступны пять: три ортогональных, один косоугольный и один комбинированный, однако из всех наиболее употребителен ортогональный метод «варимакс». Метод «варимакс» максимизирует разброс квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок. В результате простая структура получается для каждого фактора в отдельности [1] [3] [2] .

Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой:

  • Критерий Кайзера или критерий собственных чисел. Этот критерий предложен Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только факторы с собственными значениями равными или большими 1. Это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается [1] .
  • Критерий каменистой осыпи или критерий отсеивания. Он является графическим методом, впервые предложенным психологом Кэттелом. Собственные значения возможно изобразить в виде простого графика. Кэттел предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» — «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона [1] . Однако этот критерий отличается высокой субъективностью и, в отличие от предыдущего критерия, статистически необоснован. Недостатки обоих критериев заключаются в том, что первый иногда сохраняет слишком много факторов, в то время как второй, напротив, может сохранить слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике возникает важный вопрос: когда полученное решение может быть содержательно интерпретировано. В этой связи предлагается использовать ещё несколько критериев.
  • Критерий значимости. Он особенно эффективен, когда модель генеральной совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден для поиска изменений в модели и реализуем только в факторном анализе по методу наименьших квадратов или максимального правдоподобия [1] .
  • Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле детерминируемой дисперсии, когда процент дисперсии оказывается несущественным, выделение следует остановить [1] . Желательно, чтобы выделенные факторы объясняли более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, во-вторых, специфика данных может быть такова, что все главные факторы не смогут совокупно объяснить желательного процента разброса. Поэтому главные факторы должны вместе объяснять не меньше 50,1 % дисперсии.
  • Критерий интерпретируемости и инвариантности. Данный критерий сочетает статистическую точность с субъективными интересами. Согласно ему, главные факторы можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант — если сильные нагрузки имеются, однако интерпретация затруднительна, от этой компоненты предпочтительно отказаться [1][3] .

Практика показывает, что если вращение не произвело существенных изменений в структуре факторного пространства, это свидетельствует о его устойчивости и стабильности данных. Возможны ещё два варианта: 1). сильное перераспределение дисперсии — результат выявления латентного фактора; 2). очень незначительное изменение (десятые, сотые или тысячные доли нагрузки) или его отсутствие вообще, при этом сильные корреляции может иметь только один фактор, — однофакторное распределение. Последнее возможно, например, когда на предмет наличия определённого свойства проверяются несколько социальных групп, однако искомое свойство есть только у одной из них.

Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями [4] . В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции — это коэффициенты корреляции, точки — наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности — наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах [1] .

Методы факторного анализа:

Примечания

  1. 123456789 Ким Дж.-О., Мьюллер Ч. У. «Факторный анализ: статистические методы и практические вопросы» / сборник работ «Факторный, дискриминантный и кластерный анализ»: пер. с англ.; Под. ред. И. С. Енюкова. — М.: «Финансы и статистика», 1989. — 215 с.
  2. 12 Электронный учебник по статистике. Москва, StatSoft. WEB: www.statsoft.ru/home/textbook/default.htm.
  3. 1234 Шуметов В. Г. Шуметова Л. В. «Факторный анализ: подход с применением ЭВМ». ОрелГТУ, Орел, 1999. — 88 с.
  4. Пажес Ж.-П. «Конфликты и общественное мнение. Новая попытка объединить социологов и математиков» // «Социологические исследования», 1991, № 7. — с.107-115.

Литература

  • Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ. — М .: Мир, 1982. — С. 488.
  • Колин Купер. Индивидуальные различия. — М.: Аспект Пресс, 2000. — 527 с.
  • Гусев А. Н., Измайлов Ч. А., Михалевская М. Б. Измерение в психологии. — М.: Смысл, 1997. — 287 с.
  • Митина О. В., Михайловская И. Б. Факторный анализ для психологов. — М.: Учебно-методический коллектор Психология, 2001. — 169 с.
  • Факторный, дискриминантный и кластерный анализ / сборник работ под ред. Енюкова И. С. — М.: Финансы и статистика, 1989. — 215 с.
  • Пациорковский В. В., Пациорковская В. В. SPSS для социологов.  — М.: Учебное пособие ИСЭПН РАН, 2005. — 433 с.
  • Бююль А., Цёфель П. SPSS: Искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей. — СПб.: ООО «ДиаСофтЮП», 2002. — 603 с.
  • Факторный, дискриминантныи и кластерный анализ: Пер.

Ф18 с англ./Дж.-О. Ким, Ч. У. Мьюллер, У. Р. Клекка и др.; Под ред. И. С. Енюкова. — М.: Финансы и статистика, 1989.— 215 с:

Источник

Читайте также:  Какие анализы сдают чтобы стать донором
Adblock
detector